
Factor Articles - Work in Progress

Chris Double

November 29, 2016

2

Contents

I Works in latest Factor 7

1 Cells 9

1.1 Models . 9

1.2 Gadgets and Models . 10

1.3 Updating time example . 10

2 Search and Replace with PEGs 13

3 Channels 15

4 Distributed Channels 17

5 Pattern Matching 21

6 Embedded Domain Specific Languages in Factor 25

7 Parsing JavaScript 29

II Need to be updated 35

8 Partial Continuations 37

9 Distributed Concurrency 43

10 Lazy 47

11 Parsers 51

3

4 CONTENTS

12 Compilers and Interpreters 57

13 Web Applications 65

14 Continuation Based Web Apps 69

14.1 Overview . 69

14.2 Getting Started . 69

14.3 Responders . 70

14.4 Hello World 1 . 70

14.5 HTML Generation . 71

14.6 Hello World 2 . 72

14.7 Dynamic Data . 72

14.8 Some simple flow . 73

14.9 Forms and POST data . 76

14.10Associating URL’s with words . 77

14.11Local State . 78

14.12Calling ‘Subroutines’ . 79

14.13Simple Testing . 80

15 Parsing Expression Grammars 83

15.1 Parsing Arithmetic Expressions . 85

16 Factor to Javascript Compiler 89

17 Git Repository 91

17.1 How to publish a git repository . 91

17.2 Binary Files . 93

17.3 Cherry Picking . 93

18 Ogg Vorbis and Theora 95

19 Serialization 97

19.1 Serializing Objects . 97

19.2 Serializing Gadgets . 98

Foreword

This set of articles is based on postings to my weblog which can be found at http://www.bluishcoder.co.nz.

The articles in the first part have been updated to run on the current version of Factor
(built from the git repository). The remaining articles still have to be updated. The
Factor homepage can be found at http://www.factorcode.org.

The LATEXsource code for these articles can be browsed at:

http://github.com/doublec/factor-articles

The source code be retrieved with:

git clone git://github.com/doublec/factor-articles.git

The template for the LATEXversion of these articles is based on the original Factor hand-
book written by Slava Pestov.

5

6 CONTENTS

Part I

Works in latest Factor

7

Chapter 1

Cells

Factor has a Cells like mechanism for propagating changes in models to their GUI
representation (called Gadgets). It’s like a lightweight functional reactive programming
system.

1.1 Models

To have a gadget dynamically updated it must reference a ‘model’ which wraps the
value to be displayed. Whenever the data wrapped by the model is changed, a sequence
of connected objects are notified of the change.

To create a model, use the <model> word, with the value it is wrapping on the top of
the stack.

Vocabulary: models
Word: <model> (value -- model)

USE: models
42 <model> value>> .

42

New models can be created based on the value of existing models. The <arrow>
word creates a new model, with its value being the result of a quotation applied to the
original models value. Its value changes whenever the original model is changed.

Vocabulary: models.arrow
Word: <arrow> (model quot -- arrow)

USE: models
USE: models.arrow

9

10 CHAPTER 1. CELLS

SYMBOL: a
SYMBOL: b

42 <model> a set
a get [2 *] <arrow> b set
b get activate-model
b get value>> .

84
10 a get set-model
b get value>> .

20

You’ll notice the call to the word activate-model. An active model is one that gets
updated when the models it depends on change. There is a corresponding deactivate-model
that can be called to stop changes from propagating.

Vocabulary: models
Word: activate-model (model --)

Vocabulary: models
Word: deactivate-model (model --)

1.2 Gadgets and Models

Gadgets can use models as their underlying data to be displayed. The gadget will
automatically be updated when the underlying data changes.

USE: ui.gadgets.labels
USE: ui.gadgets.panes

"hello" <model>
dup <label-control> gadget.
"world" over set-model
"!" over set-model

Here we create a model containing the text “hello”. A label-control gadget is created
with this model as the data, and the gadget is printed in the listener with gadget..
The label will show “hello” as the text. When the model is updated with new text using
set-model, the label control displays the new text immediately.

1.3 Updating time example

In this example I create a global value called ‘time’ that holds a model wrapping the
current date and time:

1.3. UPDATING TIME EXAMPLE 11

USING: calendar models ;

SYMBOL: time
now <model> time set-global

The model here wraps the current date and time produced by now. To have the value
change regularly I start a background thread which sets the value every second:

USE: timers

: update-time (--)
now time get-global set-model ;

[update-time] 1 seconds every drop

The update-time words gets the current date and time (using now) and sets the
model’s value to it. A timer is created to do this every second.

We can confirm that this value is updating by getting the value of the ‘time’ variable
and see that it changes between calls:

USE: calendar.format

time get-global value>> timestamp>http-string .
"Sun, 20 Jan 2008, 02:02:02 GMT"

time get-global value>> timestamp>http-string .
"Sun, 20 Jan 2008, 02:04:02 GMT"

A label gadget that displays this value, and is updated as it changes, can be created and
displayed with:

USING: ui.gadgets.labels ui.gadgets.panes calendar.format ;

time get-global
[timestamp>http-string] <arrow> <label-control>
gadget.

Notice I’m using <arrow> to take the time value and convert it into a string. A
<label-control> can only display strings, so it has the filtered value as its data.
The gadget displayed on the listener will update automatically as the time changes
every second.

12 CHAPTER 1. CELLS

Chapter 2

Search and Replace with PEGs

The Parsing Expression Grammar library has code to allow search and replace using
parsers. The idea was to be able to do similar things with parser combinators that
regular expressions are commonly used for. The words are in the peg.search vo-
cabulary.

Vocabulary: peg.search
Word: search (string parser -- seq)

The ‘search’ word takes a string and a parser off the stack. It returns a sequence of all
substrings in the original string that were successfully parsed by the parser. The result
returned in the sequence is the AST produced by the parser. For example:

USING: peg peg.ebnf peg.parsers peg.search ;

: bold (-- parser)
<EBNF rule="*" (!("*") .)+:s "*" => [[s >string]] EBNF> ;

"hello *world* from *factor*" bold search .
=> V{ "world" "factor" }

"one 100 two 300" integer-parser search .
=> V{ 100 300 }

"one 100 two 300" integer-parser [2 *] action search .
=> V{ 200 600 }

Vocabulary: peg.search
Word: replace (string parser -- result)

The ‘replace’ word takes a string and parser off the stack. It returns the original string
with all substrings that successfully parse by the parser replaced by the result of that
parser.

13

14 CHAPTER 2. SEARCH AND REPLACE WITH PEGS

"Hello *World*" bold [
"" "" surround

] action replace .
=> "Hello World"

Chapter 3

Channels

Rob Pike gave a talk at Google about the NewSqueak programming language, and
specifically how it’s concurrency features work. NewSqueak uses channels and is based
on the concepts of Communicating Sequential Processes.

Factor has a ’channels’ vocabulary that lets you do similar things.

Vocabulary: channels
Word: <channel> (-- channel)
Word: to (value channel --)
Word: from (channel -- value)

The <channel> word creates a channel that threads can send data to and receive
data from. The to word sends data to a channel. It is a synchronous send and blocks
waiting for a receiver if there is none. The from word receives data from a channel. It
will block if there is no sender.

There can be multiple senders waiting, and if a thread then receives on the channel, a
random sender will be released to send its data. There can also be multiple receivers
blocking. A random one is selected to receive the data when a sender becomes avail-
able.

Here is the ‘counter’ example ported from NewSqueak:

USING: channels fry threads ;

: (counter) (channel n --)
[swap to] [1 + (counter)] 2bi ;

: counter (channel --)
2 (counter) ;

: counter-test (-- n1 n2 n3)

15

16 CHAPTER 3. CHANNELS

<channel> dup ’[_ counter] "counter" spawn drop
[from] [from] [from] tri ;

counter-test . . .
=> 2

3
4

Given a channel, the counter word will send numbers to it, incrementing them by
one, starting from two. counter-test creates a channel, spawns a process to run
counter, and then receives a few values from the channel.

Chapter 4

Distributed Channels

Remote Channels are distributed channels that allow you to access channels in separate
Factor instances, even on different machines on the network.

Vocabulary: channels.remote
Word: <remote-channel> (node id -- remote-channel)
Word: publish (channel -- id)

A channel can be made accessible by remote Factor nodes using the publish word.
Given a channel this will return a unique identifier that can be used by remote nodes to
use the channel. For example:

USING: fry threads channels channels.remote ;

: (counter) (channel n --)
[swap to] [1 + (counter)] 2bi ;

: counter (channel --)
2 (counter) ;

<channel> dup ’[_ counter] "counter" spawn drop publish .
=> 12345678901234567890.....

Remote channels are implemented using distributed concurrency so you must start a
node on the Factor instance you are using. This is done with ’start-node’ giving the
hostname and port in an ’addrspec’.

Vocabulary: concurrency.distributed
Word: start-node (addrspec --)

USING: io.sockets io.servers concurrency.distributed ;
"localhost" 9000 <inet> start-node

17

18 CHAPTER 4. DISTRIBUTED CHANNELS

Once this is done all published channels become available. Note that the hostname and
port must be accessible by the remote machine so it can connect to send the data you
request.

From a remote node you can create a <remote-channel> which contains the host-
name and port of the node containing the channel, and the identifer of that channel.

You can use ‘from’ and ‘to’ on the remote channel exactly as you can on normal chan-
nels. The data is marshalled over the network using the serialization library.

Run the following on a different node to use the services of the first node, replacing
’1234...’ with the published id from the previous example.

USING: io.sockets channels channels.remote concurrency.distributed ;

"localhost" 9001 <inet> start-node

"localhost" 9000 <inet> 1234... <remote-channel> from .

Note that you must start a node using ’start-node’ on all nodes that want to use remote
channels.

One way of setting up remote channel services is to serialize an instance of a <remote-channel>
for a published channel and make it available on an HTTP server. The remote nodes
can retrieve this via HTTP, deserialize it and use it. You can test this on a local machine
by running two factor instances. In instance 1:

USING:
fry
io.encodings.binary
threads
concurrency.distributed
channels
channels.remote
serialize

;

"localhost" 9000 <inet> start-node

: (counter) (channel n --)
[swap to] [1 + (counter)] 2bi ;

: counter (channel --)
2 (counter) ;

<channel> dup ’[_ counter] "counter" spawn drop
publish local-node get insecure>> swap <remote-channel>
"counter.ser" binary [serialize] with-file-writer

19

This creates a channel that returns incrementing integer numbers, as per our previous
examples. A <remote-channel> is created with the published identifier for this
channel and our node address. This is serialized to a file called “counter.ser”. A remote
node can deserialize this file and use it to access the channel immediately. In factor
instance 2:

USING:
io.encodings.binary
threads
concurrency.distributed
channels
channels.remote
serialize

;

"localhost" 9001 <inet> start-node
"counter.ser" binary [deserialize] with-file-reader
dup from .
=> 2

dup from .
=> 3

20 CHAPTER 4. DISTRIBUTED CHANNELS

Chapter 5

Pattern Matching

Given a Factor sequence or primitive type you can pattern match and create bindings
to symbols with a special format. Any symbol that begins with a ‘?’ character is used
as a pattern match variable, and binds to the value in a matching sequence. Here’s a
simple example:

Vocabulary: match
Word: match (value1 value2 -- bindings)

USE: match

MATCH-VARS: ?a ?b ?c ;

{ 1 2 3 } { ?a ?b ?c } match .
H{ { ?a 1 } { ?b 2 } { ?c 3 } }

The two sequences match in that they are both sequences with three items. So the
result is a hashtable containing the pattern match variables as keys and the values of
those variables in the second sequence as the value. If items in the sequence are not
pattern match variables then they must match exactly:

{ 1 2 3 } { 1 2 ?a } match .
H{ { ?a 3 } }

{ 1 2 3 } { 2 2 ?a } match .
f

The second example doesn’t match as the first element in both sequences is not the
value ‘2’.

Matching works recursively too:

21

22 CHAPTER 5. PATTERN MATCHING

{ 1 2 { 3 4 } { 5 6 } } { 1 2 ?a { ?b ?c } } match .
H{ { ?a { 3 4 } } { ?b 5 } { ?c 6 } }

This type of pattern matching is very useful for deconstructing messages sent to dis-
tributed factor objects. But even more useful is to be able to have something like
cond but working directly with patterns. This is what match-cond does. It takes
a sequence and an array of arrays. Each sub-array contains the pattern to match the
sequence against, and a quotation to execute if that pattern matched. The quotation is
executed with the hashtable result of the pattern match bound in the current namespace
scope, allowing easy retrieval of the pattern match variables.

Vocabulary: match
Word: match-cond (assoc --)

It sounds complex but is actually very easy in practice. Here what an example ‘counter’
process might look like using match-cond:

USING: fry match concurrency.messaging ;

SYMBOL: increment
SYMBOL: decrement
SYMBOL: get
MATCH-VARS: ?value ?from ?tag ;

: counter (value --)
receive {

{ { increment ?value } [?value +] }
{ { decrement ?value } [?value -] }
{ { get ?from } [dup ?from send] }
{ _ ["Unmatched message" print flush] }

} match-cond counter ;

This is a process that keeps track of a count value. You can send messages to increment
or decrement the count by an amount, or to get the value and send it back to the calling
process. So sends/receives look like:

USING: make threads ;

[0 counter] "counter" spawn
{ increment 5 } over send
{ decrement 10 } over send
[get , self ,] { } make swap send receive .

-5

One thing to be aware of with match-cond is that calls in the quotation side of
a condition are not tail recursive. So the following looks equivalent to the previous

23

counter example but is not tail recursive and will consume call stack space on each
message, eventually failing when it overflows:

: counter (value --)
receive {

{ { increment ?value } [?value + counter] }
{ { decrement ?value } [?value - counter] }
{ { get ?from } [dup ?from send counter] }
{ _ ["Unmatched message" print flush counter] }

} match-cond ;

Pattern matching on tuples, and the repeating presence of match variables also works:

TUPLE: person first last ;
MATCH-VARS: ?first ?last ;

T{ person f "chris" "double" } T{ person f ?first ?last } match .
H{ { ?first "chris" } { ?last "double" } }

{ "one" "two" "one" "two" } { ?a ?b ?a ?b } match .
H{ { ?a "one" } { ?b "two" } }

{ "1" "two" "one" "two" } { ?a ?b ?a ?b } match .
f

24 CHAPTER 5. PATTERN MATCHING

Chapter 6

Embedded Domain Specific
Languages in Factor

I’ve been doing some experimenting with the emedded grammar code I wrote for Fac-
tor, trying to make it easier to use and a bit more useful for real world projects.

My inspiration for the changes has been seeing the kinds of things OMeta can do and
the examples in the Steps towards the reinvention of programming from the Viewpoints
Research Institute.

The original parsing expression grammar code (in the vocab ’peg’) produced a data
structure composed of Factor tuples that was interpreted at runtime via a call to the
word ’parse’. It still has the data structure of tuples but now it can be compiled into
Factor quotations, which are then compiled to native machine code via the Factor com-
piler. The ’parse’ word calls ’compile’ on the datastructure and calls it.

I created a parsing word that allows you to embed the peg expression directly in code,
have it compiled to a quotation at parse time, and then called at runtime. Usage looks
like:

USE: peg.ebnf

"1+2" [EBNF expr=[0-9] ’+’ [0-9] EBNF]

The older peg code had an <EBNF ... EBNF> embedded language and each rule
in the language was translated to a Factor word. That’s now changed to an EBNF:
definition. An example:

USING: peg.ebnf math.parser rosetta-code.long-multiplication ;

EBNF: expr

25

26 CHAPTER 6. EMBEDDED DOMAIN SPECIFIC LANGUAGES IN FACTOR

digit = [0-9] => [[digit>]]
number = (digit)+ => [[digits->integer]]
value = number

| ("(" exp ")") => [[second]]

fac = fac:x "*" value:y => [[x y *]]
| fac:x "/" value:y => [[x y /]]
| number

exp = exp:x "+" fac:y => [[x y +]]
| exp:x "-" fac:y => [[x y -]]
| fac

;EBNF

This creates a word, ’expr’, that runs the last rule in the embedded language (the ’exp’
rule in this case) on the string passed to it:

"1+2*3+4" expr .
=> 11

If you’ve used peg.ebnf before you’ll see some new features in this code:

• You can do character ranges using code like [a-zA-Z] to match upper and
lowercase characters, etc.

• Factor quotations can be embedded to process the results of choices. Anything
between the [[...]] will be run when that choice succeeds and the result
put in the abstract syntax tree for that rule. The default AST produced by the rule
is on the stack of the quotation. The example above drops this in some cases, and
transforms it in others.

• Rule elements can have variable names suffixed to it and these can be referenced
in the action quotations. This is implemented using locals. This can be seen in
EBNF code like this:

exp:x "+" exp:y => [[x y +]]

Usually that rule produces an AST consisting of a 3 element sequence, each
element being the AST produced by the rules elements. The action quotation is
transformed into:

[let* | x [0 over nth]
y [2 over nth] |

drop x y +
] with-locals

27

This is efficient and makes the grammar easier to read. Note that when using
variable names in a rule that the action quotation has stack effect (-- ast)
instead of the usual (ast -- ast).

• Another major new feature is grammars now handle direct and indirect left re-
cursion. I implemented this from the VPRI paper Packrat Parsers Can Support
Left Recursion. It makes converting existing grammars to peg grammars much
easier.

• Semantic actions have been added. These are like normal [[...]] actions
except they have stack effect (ast -- bool). Given an abstract syntax
tree from the preceding element, it should return a boolean indicating whether
the parse succeeded or not. For example:

odd= [0-9] ?[digit> odd?]?

• Some of the syntax has changed. Previously { ... } was used for repeating
zero or more times and [...] was for optional. Now I use (...)*,
(...)+, (...)?, for zero or more, one or more, and optional respectively.
The dot (.) is used to match anything at that point. Terminals can be enclosed
in single or double quotations.

• There is a ’rule’ word that can be used to get a single rule from a compiled
grammar:

EBNF: foo
number=([0-9])+
expr = number ’+’ number
;EBNF

USE: peg

"1+2" foo => V{ V{ 49 } "+" V{ 50 } }
"1+2" "number" \ foo rule parse => V{ 49 }

Notice the ’rule’ word returns the parser object rather than the compiled quota-
tion. This is useful for testing and further combining with other parsers.

These changes are in the main Factor repository. There is the peg.pl0 and peg.expr
vocabs as examples. The peg.ebnf code is in an experimental state and is likely to
change a lot until I’m satisfied with it so be aware that it might not be wise to use it
in stable code unless you’re happy with tracking the changes. I welcome feedback and
ideas though.

One feature I’m currently working on but haven’t put in the main repository yet is
the ability to use the embedded grammar DSL to operate over Factor arrays and tuples.
This allows writing an embedded grammar to produced an AST, and another embedded
grammar to transform that AST into something else. Here’s what code to transform an
AST currently looks like (note that this does not currently compile):

28 CHAPTER 6. EMBEDDED DOMAIN SPECIFIC LANGUAGES IN FACTOR

TUPLE: plus lhs rhs ;

EBNF: adder
num = . ?[number?]?
plus = . ?[plus?]? expr:a expr:b => [[drop a b +]]
expr = plus | num
;EBNF

T{ plus f 1 T{ plus f 2 3 } } adder parse-result-ast .

=> 6

This uses features I’ve already discussed, like semantic actions, to detect the type of
the object. The difference is that the parser produced by EBNF: operates not on strings,
but on an abstract sequence type that is implemented for strings, sequence, and tuples.
I’m still playing around with ideas for this but I think it’ll be a useful way to reuse
grammars and string them together to perform tasks.

Chapter 7

Parsing JavaScript

I’ve made some more changes to the Parsing Expression Grammar library in Factor.
Most of the changes were inspired by things that OMeta can do. The grammar I used
for testing is an OMeta-JS grammar for a subset of JavaScript. First the list of changes:

• Actions in the EBNF syntax receive an AST (Abstract Syntax Tree) on the stack.
The action quotation is expected to have stack effect (ast -- ast). It
modifies the AST and leaves the new version on the stack. This led to code that
looks like this:

expr = lhs ’+’ rhs => [[first3 nip +]]

Nothing wrong with that, but a later change added variables to the EBNF gram-
mar to make it more readable:

expr = lhs:x ’+’ rhs:y => [[drop x y +]]

Code that uses variables a lot end up with a lot of ’drop’ usage as the first word. I
made a change recommended by Slava to have the action add the drop automat-
ically depending on the stack effect of the action. So now this code works:

expr = lhs:x ’+’ rhs:y => [[x y +]]

So now if you use variables in a rule, the stack effect of the action should be (
-- ast). If you don’t, it should be (ast -- ast).

• I added a way for one EBNF parser to call rules defined in another. This allows
creating grammars which are hybrids of existing parsers. Or just to reuse com-
mon things like string handling expressions. These calls are called ’foreign’ calls
and appear on the right hand side of a rule in angle brackets. Here is a parser that
parses strings between double quotation marks:

29

30 CHAPTER 7. PARSING JAVASCRIPT

EBNF: parse-string
StringBody = (!(’"’) .)*
String= ’"’ StringBody:b ’"’ => [[b >string]]
;EBNF

To call the ’String’ rule from another parser:

EBNF: parse-two-strings
TwoStrings = <foreign parse-string String>

<foreign parse-string String>
;EBNF

The <foreign> call in this example takes two arguments. The first is the
name of an existing EBNF: defined parser. The second is the rule in that parser
to invoke. It can also be used like this:

EBNF: parse-two-strings
TwoString = <foreign parse-string> <foreign parse-string>
;EBNF

If the first argument is the name of an EBNF: defined parser and no second
argument is given, then the main rule of that parser is used. The main rule is the
last rule in the parser body. A final way foreign can be used:

: a-token (-- parser) "a" token ;

EBNF: parse-abc
abc = <foreign a-token> ’b’ ’c’
;EBNF

If the first argument given to foreign is not an EBNF: defined parser, it is assumed
that it has stack effect (-- parser) and it will be called to return the parser
to be used.

• It is now possible to override the tokenizer in an EBNF defined parser. Usually
the sequence to be parsed is an array of characters or a string. Terminals in a rule
match successive characters in the array or string. For example:

EBNF: foo
rule = "++" "--"
;EBNF

This parser when run with the string ”++–” or the array { CHAR: + CHAR:
+ CHAR: - CHAR: - } will succeed with an AST of { "++" --" }. If
you want to add whitespace handling to the grammar you need to put it between
the terminals:

31

EBNF: foo
space = (" " | "\r" | "\t" | "\n")
spaces = space* => [[drop ignore]]
rule = spaces "++" spaces "--" spaces
;EBNF

In a large grammar this gets tedious and makes the grammar hard to read. Instead
you can write a rule to split the input sequence into tokens, and have the grammar
operate on these tokens. This is how the previous example might look:

EBNF: foo
space = (" " | "\r" | "\t" | "\n")
spaces = space* => [[drop ignore]]
tokenizer = spaces ("++" | "--")
rule = "++" "--"
;EBNF

’tokenizer’ is the name of a built in rule. Once defined it is called to retrieve
the next complete token from the input sequence. So the first part of ’rule’ is to
try and match ”++”. It calls the tokenizer to get the next complete token. This
ignores spaces until it finds a ”++” or ”–”. It is as if the input sequence for the
parser was actually { "++" "--" } instead of the string ”++–”. With the new
tokenizer ”....” sequences in the grammar are matched for equality against the
token, rather than a string comparison against successive items in the sequence.
This can be used to match an AST from a tokenizer:

USING: peg peg.ebnf math.parser ;

TUPLE: ast-number value ;
TUPLE: ast-string value ;

EBNF: parse-string
StringBody = (!(’"’) .)*
String= ’"’ StringBody:b ’"’ => [[b >string]]
;EBNF

EBNF: foo-tokenizer
space = (" " | "\r" | "\t" | "\n")
spaces = space* => [[drop ignore]]

number = [0-9]+ => [[>string string>number ast-number boa]]
string = <foreign parse-string String> => [[ast-string boa]]
operator = ("+" | "-")

token = spaces (number | string | operator)
tokens = token*

32 CHAPTER 7. PARSING JAVASCRIPT

;EBNF

EBNF: foo
tokenizer = <foreign foo-tokenizer token>

number = . ?[ast-number?]? => [[value>>]]
string = . ?[ast-string?]? => [[value>>]]
rule = string:a number:b "+" number:c => [[a b c + 2array]]
;EBNF

In this example I split the tokenizer into a separate parser and use ’foreign’ to
call it from the main one. This allows testing of the tokenizer separately:

"123 456 +" foo-tokenizer .
=> { T{ ast-number f 123 } T{ ast-number f 456 } "+" }

The ’.’ EBNF production means match a single object in the source sequence.
Usually this is a character. With the replacement tokenizer it is either a number
object, a string object or a string containing the operator. Using a tokenizer in
language grammars makes it easier to deal with whitespace. Defining tokenizers
in this way has the advantage of the tokenizer and parser working in one pass.
There is no tokenization occurring over the whole string followed by the parse of
that result. It tokenizes as it needs too. You can even switch tokenizers multiple
times during a grammar. Rules use the tokenizer that was defined lexically before
the rule. This is usefull in the JavaScript grammar:

EBNF: javascript
tokenizer = default
nl = "\r" "\n" | "\n"
tokenizer = <foreign tokenize-javascript Tok>
...

End = !(.)
Name = . ?[ast-name?]? => [[value>>]]
Number = . ?[ast-number?]? => [[value>>]]
String = . ?[ast-string?]? => [[value>>]]
RegExp = . ?[ast-regexp?]? => [[value>>]]
SpacesNoNl = (!(nl) Space)* => [[ignore]]
Sc = SpacesNoNl (nl | &("}") | End)| ";"
...

Here the rule ’nl’ is defined using the default tokenizer of sequential characters
(’default’ has the special meaning of the built in tokenizer). This is followed
by using the JavaScript tokenizer for the remaining rules. This tokenizer strips
out whitespace and newlines. Some rules in the grammar require checking for
a newline. In particular the automatic semicolon insertion rule (managed by the
’Sc’ rule here). If there is a newline, the semicolon can be optional in places.

33

"do" Stmt:s "while" "(" Expr:c ")" Sc => [[s c ast-do-while boa]]

Even though the JavaScript tokenizer has removed the newlines, the ’nl’ rule can
be used to detect them since it is using the default tokenizer. This allows gram-
mars to mix and match the tokenizer as required to make them more readable.

The JavaScript grammar is in the peg.javascript.parser vocabulary. The tokenizer is in
peg.javascript.tokenizer. You can run it using the ’parse-javascript’ word in peg.javascript:

USE: peg.javascript
"var a=’hello’; alert(a);" parse-javascript pprint
T{ ast-begin f

V{
T{ ast-var f "a" T{ ast-string f "hello" } }
T{ ast-call f

T{ ast-get f "alert" } V{ T{ ast-get f "a" } } }
}

}

34 CHAPTER 7. PARSING JAVASCRIPT

Part II

Need to be updated

35

Chapter 8

Partial Continuations

I’ve written some partial continuation support and put it in the Factor contrib directory.
It implements bshift and breset as outlined by Oleg’s post on comp.lang.scheme.

It should be relatively easy to convert Oleg’s Scheme examples to Factor. Just remem-
ber that the partial continuation has stack effect (a – b) and the quotations passed to
bshift and breset have stack effect (pcc – v) and (– v) respectively.

‘breset’ marks the scope of the partial continuation. If ‘bshift’ is not used then the
value returned by the quotation is left on the stack:

[drop 5] breset
=> 5

An example with ‘bshift’:

[
1 swap [5 swap call] bshift +

] breset
=> 6

In this case the partial continuation passed to the ‘bshift’ quotation represents the com-
putation ‘1 X +’ where ‘X’ is replaced by the value passed to the partial continuation.
In this case 5, resulting in a result of 6. Additional calls can be made to the same
continuation:

[
1 swap [5 over call swap call] bshift +

] breset
=> 7

37

38 CHAPTER 8. PARTIAL CONTINUATIONS

This calls the ‘1 X +’ partial continuation twice. First with ‘5’ returning the value ‘6’.
Which is then passed to it again, returning ‘7’. The partial continuation does not need
to be called. Values that ‘fall through’ cause the result to be returned from the ‘breset’
quotation:

[
1 swap [drop 5] bshift +

] breset
=> 5

Here’s a fun example translated from Oleg’s posting. The following ‘range’ function
has some interesting properties:

: range (r from to --)
rot [(from to pcc --)

-rot [over + pick call drop] each 2drop f
] bshift ;

It uses the standard ‘each’ call on a ‘from’ and ‘too’ number to call a quotation on
each number between ‘from’ and ‘too’ inclusive. The quotation called is the partial
continuation provided by ‘bshift’. This can be used in code like:

[1 5 range .] breset drop
=> 1

2
3
4
5

For each item in the range it executed the partial continuation which is ‘X .’, print-
ing that item in the range. So given a function that knows nothing about the special
capability of ‘range’ can still work with it. The following prints the first five factorials:

: fact (n -- n) dup 1 = [1] [dup 1 - fact] if * ;

[1 5 range fact .] breset drop
=> 1

2
6
24
120

I’m not sure how useful delimited continuations are in Factor but it gives something to
play with to see how they work.

39

I’ve made some changes to the parser combinator library I wrote for Factor. The
changes were to make the usage of the library to be more consistent with good Factor
style.

The first change was to ensure that items on the stack are accessable in an intuitive
manner from within the quotations passed to breset and bshift. When writing combi-
nators in Factor it’s important that the internals of the combinator implementation do
not affect the callers view of items on the stack. For example:

20 [drop 2 *] breset

Recall that the quotation passed to breset has stack effect (r – v). Once the ‘r’ is
dropped the ‘*’ should be expected to operate on the ‘2’ and the ‘20’. The ‘20’ is
accessable as if it was directly under the ‘r’ on the stack from within the quotation.

In a prior implementation of breset I called the quotation using ‘call’ after creating a
‘dup’ of the ‘r’:

: breset
... (quot r --)
dup rot call (r v --)

The problem with this is that from within the quotation there is an extra ‘r’ above items
on the stack before the quotation is called:

20 [drop 2 *] breset

The stack on entry to the quotation here is (20 r r –). Changing the breset implemen-
tation to use ‘keep’ instead of call fixes this problem:

: breset
... (quot r --)
swap keep (v r --)

Notice also that the return item from the quotation, ‘v’, is now below the ‘r’ and I didn’t
need to ‘dup’ it. In general, usage of words like ‘keep’ will enable combinators to more
intuitively access stack items from outside the quotation.

Another way of solving this problem is to use the return stack words ‘¿r’ and ‘r¿’ to
move items temporarily off the stack so that the quotation being called is imediately
above the relevant stack items supplied by the caller.

The second major change was to remove the use of ‘with-scope’ and namespaces to
store the continuation delimiter. I previously stored this in a ‘mark’ and ‘mark-old’
variable. Now the implementations of breset and bshift manage these on the stack.

Storing variables in namespaces is seductive. It enables you to avoid sometimes com-
plicated stack management by giving you named variables. Unfortunately it comes
with a price. When setting the value of a variable in a namespace it is stored in the top
most namespace on the namespace stack. This can be seen with code like this:

40 CHAPTER 8. PARTIAL CONTINUATIONS

SYMBOL: myvar
5 myvar set
myvar get .
=> 5

10 [myvar set] keep drop myvar get .
=> 10

As expected setting the myvar variable in the quotation passed to ‘keep’ results in the
global myvar value being set to 10. But if this is run inside a ‘with-scope’ you get
caught by the fact that a new namespace is at the top of the stack:

myvar get .
=> 10

20 [[myvar set] with-scope] keep drop myvar get .
=> 10

Notice the value is still 10. This is because the variable is set in the new namespace
which is dropped off the namespace stack when the ‘with-scope’ exits. Normally you
would be aware of this when you write code, but if you use a combinator that uses
‘with-scope’ in its implementation, and it then calls your quotation from within that
scope then all your variable sets will be lost at the end of the combinator call.

This may be desired, and the reason why the combinator is in a scope, but for many
cases it’s not the desired behaviour. So as a general rule I try to avoid using variables
and with-scope in combinator implementations.

There was also a minor bug in my ‘range’ example in that it didn’t give the correct range
if the starting number was anything but ‘1’. The corrected ‘range’ implementation is:

: range (r from to -- n)
over - 1 + rot [

-rot [over + pick call drop] each 2drop f
] bshift 2nip ;

Note the ‘2nip’ at the end. ‘bshift’ and ‘breset’ operate like other continuation combi-
nators in that they restore the stack to what they were before they were called. In this
case the ‘from’ and ‘to’ were on the stack and we need to ‘nip’ them off. Simple usage
works as before:

[1 5 range . f] breset drop
=> 1

2
3
4
5

41

Nested usage works correctly now:

[dup 1 3 range swap 10 12 range + . f] breset drop
=> 11

12
13
12
13
14
13
14
15

It can be hard to reason about what usage of words like ‘range’ does. Think of it as
returning a single value ‘n’, and calling the breset multiple times with the value of ‘n’
for each ‘n’ in the range. So you’ll see that after the first ‘range’ call I ‘swap’ to swap
the result of the range and get the continuation mark passed to breset back to the top of
the stack to call the second ‘range’.

You’ll notice that the result of calling these snippets always returns ‘f’ on the stack.
This is because the range implementation leaves ‘f’ on the stack at the end of the bshift
quotation. This results in ‘breset’ exiting with that value.

A question was raised on the Factor mailing list about CLU-style iterators. An example
of the usage from one of the links in that message is:

sum: INT := 0;
loop sum := sum + 1.upto!(10); end;
#OUT + sum + ’\n’; -- Prints sum of integers from 1 to 10

This has a very direct translation in Factor using range and breset as:

SYMBOL: sum
0 sum set
[1 10 range sum get + sum set f] breset drop
sum get .
=> 55

42 CHAPTER 8. PARTIAL CONTINUATIONS

Chapter 9

Distributed Concurrency

I’ve just added simple distributed message passing support to the concurrency library.
Processes now belong to ‘nodes’. These are individual Factor instances running on a
machine. Messages can be sent between Factor nodes using the same foramt as sending
from processes within a Factor instance.

So far the support I’ve added is very basic and not at all optimized but it works. Mes-
sages can be any Factor type supported by the serialization library.

I’ve extended the serialization library by added a serializer for local processes that
serializes it as a ‘remote-process’. This holds the node details (hostname and port) and
the process identifier (known as the pid). This allows you to send a local process to
a remote process, and that remote process can send a reply back to the local one by
sending a message to the remote-process object it receives.

A possible future extension to this might be to serialize proxies for other types. For
example, sending a stream in a message can serialize it as a proxy stream so that writes
to it from the remote system are sent back to the stream on the local system.

The current state of the system is in my repository:

darcs get http://www.bluishcoder.co.nz/repos/factor

The ‘start-node’ word is used to start up a TCP listener to handle requests from remote
processes. This is required for distributed message passing to work. If you don’t use
‘start-node’ only local message sends will be enabled. Here’s a simple example that
sends a message to a remote process, and it sends a reply back to the caller:

#! On Machine 1
"concurrency" require
USE: concurrency

43

44 CHAPTER 9. DISTRIBUTED CONCURRENCY

"machine1.com" 9000 start-node

: process1 (--)
receive "Message Received!" reply process1 ;

[process1] spawn "process1" swap register-process

This starts the node up with hostname ‘machine1.com’ on port 9000. A word called
‘process1’ is defined that blocks until it receives a message (either from another local
process or a remote process) and replies to the message sender with the string ”Message
Received!”. It then calls itself to restart the blocking on message receive.

This word is spawned as a process and registered in that nodes global register of named
processes as ‘process1’.

#! On Machine 2
"concurrency" require
USE: concurrency

"machine2.com" 9000 start-node

["machine1.com" 9000 "process1"
"test-message" swap send-synchronous .

] spawn

This code, run in a Factor instance on Machine 2, starts a node with hostname ‘ma-
chine2.com’ on port 9000. It spawns a process which sends a message to the process
named ‘process1’ on the node at hostname machine1.com, port 9000.

This example sends a synchronous message. It is the equivalent of Termite Scheme’s
‘!?’ operator or Joe Armstrongs ‘!!’ proposed Erlang extension - basically an RPC
call. The message is sent to process one and blocks waiting for a reply to that specific
message. On the reply it displays it (using ‘.’) which results in ‘Message Received!’
being printed.

Asynchronous sends work too. For example, a logger process on machine 1:

#! On Machine 1

: logger (--)
receive print logger ;

[logger] spawn "logger" swap register-process

Messages can be sent to this process from any machine with:

45

#! On Machine 2

["machine1.com" 9000 "logger"
"Log Message!" swap send

] spawn

After this message send ‘Log Message!’ will be printed on machine 1.

Messages can be sent to named processes, registered in the nodes global registry, as
these examples show, or they can be sent to any process given the pid - a unique iden-
tifier for that process. They can also be sent to remote processes given a deserialized
reference to the process object. You could store on a file system or web server deseri-
alized references to important processes that clients can send messages to.

I’m still working on the public API and making the performance better. Currently all
message sends open and close the TCP socket to the remote server per message. There
is also no security. The server connection for the node is accessable by anyone. Initially
I may follow the Erlang ‘magic cookie’ approach to prevent unauthorised message
sends but keen to look at better options.

My motivation for working on this is to add to my in-progress web framework the
ability to have the server side processes distributed across Factor instances or machines.
This is one way to enable Factor to use multiple processors in a machine for example.

46 CHAPTER 9. DISTRIBUTED CONCURRENCY

Chapter 10

Lazy

I originally wrote the Lazy Lists library in Factor to support the Parser Combinators
library. It was one of my first libraries in Factor and was probably not very well written.
Matthew Willis worked on it for the recent Factor releases to get it working with the
removal of the standard list datatype and made it a lot better in places.

Both the lazy lists and parser combinators worked by building up quotations manually
to defer computation, and having these quotations called when required. This unfortu-
nately made the library a bit difficult to debug and understand. While using the parser
combinators library for a recent project I found it quite hard to work some things out
and found a couple of bugs in the parser combinators - and areas where the lazy lists
weren’t lazy enough.

To resolve the issues I rewrote the lazy lists library in a slightly different style and plan
to redo the parser combinators in a similar manner. Instead of building up quotations I
now use tuples to hold the information, with generic functions to call to process them.

I created a generic function based protocol for lists. It has three generic functions:

GENERIC: car (cons -- car)
GENERIC: cdr (cons -- cdr)
GENERIC: nil? (cons -- bool)

A ‘cons’ tuple for normal non-lazy lists, with the obvious implementation was the
starting point:

TUPLE: cons car cdr ;
M: cons car (cons -- car)

cons-car ;

M: cons cdr (cons -- cdr)

47

48 CHAPTER 10. LAZY

cons-cdr ;

: nil (-- cons)
T{ cons f f f } ;

M: cons nil? (cons -- bool)
nil eq? ;

This gives the functionality of ordinary lists that used to exist in Factor. To make actual
lazy lists I use the ‘force’ and ¡promise¿ words from Matthew’s lazy list rewrite. A
¡promise¿ is a wrapper around a quotation that calls that quotation when ‘force’ is
called on it, and memoizes the value to return directly on later ‘force’ calls. A lazy list
has a promise for both the ‘car’ and ‘cdr’:

: lazy-cons (car cdr -- promise)
>r <promise> r> <promise> <cons>
T{ promise f f t f } clone [set-promise-value] keep ;

M: promise car (promise -- car)
force car force ;

M: promise cdr (promise -- cdr)
force cdr force ;

M: promise nil? (cons -- bool)
force nil? ;

Notice that the lazy list itself is a promise. And the methods are specialized on the
¡promise¿ type. So not only are the ‘car’ and ‘cdr’ promises, but so is the list itself. The
‘cdr’ of a lazy list is a promise, which when forced, returns something that conforms
to the list protocol. This means parts of the list can be lazy, and parts non-lazy

A lazy map operation is the first word I implemented on top of this generic proto-
col. Previous implementations used quotations that were automatically generated and
were quite complicated. In this new implementation I created a ¡lazy-map¿ tuple that
implemented the list protocol which turned out to be much simpler:

TUPLE: lazy-map cons quot ;

: lmap (list quot -- result)
over nil? [2drop nil] [<lazy-map>] if ;

M: lazy-map car (lazy-map -- car)
[lazy-map-cons car] keep
lazy-map-quot call ;

49

M: lazy-map cdr (lazy-map -- cdr)
[lazy-map-cons cdr] keep
lazy-map-quot lmap ;

M: lazy-map nil? (lazy-map -- bool)
lazy-map-cons nil? ;

Basically the ‘lmap’ call itself just returns a ¡lazy-map¿ which contains the quotation
and list to map over. Calls to ‘car’ will call the quotation on the head of the list,
while ‘car’ returns a new ¡lazy-map¿ that holds the same quotation and the ‘cdr’ of the
original list.

The ‘take’ operation returns the first ‘n’ items in the list (whether lazy or not). It’s lazy
implementation is:

TUPLE: lazy-take n cons ;

: ltake (n list -- result)
over zero? [2drop nil] [<lazy-take>] if ;

M: lazy-take car (lazy-take -- car)
lazy-take-cons car ;

M: lazy-take cdr (lazy-take -- cdr)
[lazy-take-n 1-] keep
lazy-take-cons cdr ltake ;

M: lazy-take nil? (lazy-take -- bool)
lazy-take-n zero? ;

Given a word ‘naturals’ to return an infinite list of natural numbers, the squares of the
first 10 numbers can be returned as:

naturals [dup *] lmap 10 swap ltake

The result is a lazy list itself. No actual computation is done yet until ‘car’ or ‘cdr’ is
called on the result.

More code implements ‘subset’ to filter out items from the lists, append lazy lists in a
lazy manner, etc. The squares of all odd natural numbers are expressed as:

naturals [odd?] lsubset [dup *] lmap

50 CHAPTER 10. LAZY

It would be possible to add to this to implement the protocol for other things like lines in
a file. This way you can lazily read through a large file line by line. Although this could
be done in the previous lists code I think this approach makes things easier to read. As
part of the refactoring I also wrote integrated Factor help for all the non-internal words.

I’m not sure how ‘concatenative’ this approach is or whether it’s the right approach for
‘stack’ based languages but it seems to work well for Factor. I’ll work on the parser
combinators, fitting them into a similar style, and see how it works out with the current
project.

Chapter 11

Parsers

I was asked on IRC how to use parser combinators to write a simple translator from
s-expressions to Factor quotations. The translation was quite simple - here are some
examples of how it was supposed to work:

(set a 10)
=> ["set" "a" 10]

(set square (lambda (n) (* n n)))
=> ["set" "square" ["lambda" ["n"] ["*" "n" "n"]]]

This looked like it should be fairly simple so I put together a quick implementation.

The parser combinators were recently rewritten so this code is likely to work best with
the Darcs version of Factor. Instructions on how to get this going are at the Factor
website. Basic instructions for an Intel Linux based machine would go something like:

git clone http://www.factorcode.org/
cd factor
make linux-x86-32
wget http://factorcode.org/images/latest/boot.x86.32.image
./factor -i=boot.x86.32.image
./factor

To run the examples from within Factor you will need to load the parser-combinators
module and use it:

USE: parser-combinators
USE: lazy-lists

51

52 CHAPTER 11. PARSERS

A parser combinator is a tuple that has specialised the ‘parse’ generic word. This word
has stack effect (input parser – result). The input is a sequence of tokens (usually a
string) and the result is what is known as a lazy list of successes.

A ‘list of sucesses’ is a list of all possible sucessful parse results. It being lazy, each
result in the list is not computed (ie. the parse is not done) until that list element is
requested. This is how parser combinators handle backtracking. If the first parse result
in the list is not what is required, the second can be tried, etc.

Parsers can be written manually or existing parsers can be combined together using
combinators. A number of existing parsers and combinators are provided in the ‘parser-
combinators’ vocabulary to build simple parsers.

To start with the s-expression parser we can handle the ‘(’ and ‘)’ using the ‘token’
word. This word returns a parser that parses only the given string:

LAZY: ’lparens’ (-- parser)
"(" token ;

LAZY: ’rparens’ (-- parser)
")" token ;

Notice these are defined with the ‘LAZY:’ word instead of ‘:’. This means the result
of the word is a promise and needs to be forced to get the actual value. Although not
strictly necessary with these simple parsers it is required for those that recursively call
themselves so I generally always define parsers using it. Examples of usage:

"(" ’lparens’ parse car . => T{ parse-result f "(" T{ slice f "(" 1 1 } }

The result of the parse is a lazy list. Returning the ‘car’ of that list shows the first parse
result. The ‘parse-result’ tuple has two slots. The first slot is the parse tree returned
by the parser. The second is the rest of the input string remaining to be parsed if any.
Usually the latter is a slice for efficiency purposes. The parsers created with ‘token’
return the token itself as the parse tree.

The s-expression parser needs to parse numbers and identifiers. Numbers are digits
repeated multiple times. A parser for digits could be:

LAZY: ’digit’ (-- parser)
[digit?] satisfy ;

This uses the ‘satisfy’ parser generator word. Where ‘token’ parses an input string for
a specified string, ‘satisfy’ will call a given quotation with the first character of the
input string. If the quotation returns ‘true’ then the parse is succesful otherwise it fails.
Examples of using this definition of ‘digit’ are:

"123" ’digit’ parse car parse-result-parsed . => 49

53

The ‘parse-result-parsed’ word returns just the parse tree of the result from the ‘parse-
result’ tuple. The result, ‘49’, is the character code of the successfully parsed digit.
Ideally I want the actual number returned rather than the character code.

The ‘<@’ word applies a transformation to the parse tree of a parser. It converts an
existing parser to one that does what the original parser did but has the transformation
applied. ‘<@’ takes a quotation on the stack with stack effect (old-tree – new-tree).
This quotation is called to perform the transformation. One way to remember the effect
of ‘<@’ is to note that ‘<’ sign points to the parser being transformed. Here is ‘digit’
converted to return a number:

LAZY: ’digit’ (-- parser)
[digit?] satisfy [digit>] <@ ;

"123" ’digit’ parse car parse-result-parsed . => 1

‘digit>’ is a standard Factor word that coverts the character code of a digit into the
digit itself. A number is one or more digits in a row. The <+> word takes a parser as
input and returns a parser that parses one or more instances of the original. It has the
same meaning as ‘+’ in regular expressions. This allows a ‘number’ parser word to be
written as:

LAZY: ’number’ (-- parser)
’digit’ <+> ;

"123" ’number’ parse car parse-result-parsed . => { 1 2 3 }

Notice here that the result is an array of the digits in the number. This is the parse tree
that <+> generates - an array of the results of the original parser. By using ‘<@’ this
can be converted into a numeric value using Factor’s ‘reduce’ word (basically a left
fold):

LAZY: ’number’ (-- parser)
’digit’ <+> [0 [swap 10 * +] reduce] <@ ;

"123" ’number’ parse car parse-result-parsed . => 123

Interestingly ‘number’ actually returns more than one parse result since ”123” contains
more than one occurrence of digits in a sequence:

"123" ’number’ parse [parse-result-parsed] lmap [.] leach
=> 123

12
1

54 CHAPTER 11. PARSERS

It returns the longest match first which is what we usually want. As the list is lazy if we
don’t request anything beyond the first match then the remaining parse results aren’t
actually computed.

Next on the list is identifiers. These are any sequences of characters that are not num-
bers, spaces, or parenthesis. The ‘satisfy’ word can be used for this, combined with
<+>:

LAZY: ’identifier’ (-- parser)
[

[blank? not] keep
[digit? not] keep
[CHAR: (= not] keep
CHAR:) = not
and and and

] satisfy <+> [>string] <@ ;

"foo" ’identifier’ parse car parse-result-parsed . => "foo"

The ‘<@’ word is used to transform the result into a string otherwise we’d get an array
of the character codes in the identifier as a result.

Often it is desired to parse either a number or an identifier. The ‘atom’ word does this:

LAZY: ’atom’ (-- parser)
’identifier’ ’number’ <|> ;

"123" ’atom’ parse car parse-result-parsed . => 123
"foo" ’atom’ parse car parse-result-parsed . => "foo"

It uses ‘< | >’, known as the choice word. It takes two parsers on the stack, and
generates a parser which when run will try the first parser on the input string. If it fails
it will then try the second parser. It returns the list of successes resulting from both
parses.

A first cut at parsing a single expression like ‘(set a 10)’ requires a sequencing parser
combinator. This is ‘<&>’. It takes two parsers and returns a resulting parser which
when run will run the first parser on the input string, and then run the second parser on
the remaining unparsed portion of the input string of each result from the first parser.
A simple expression parser might look like:

LAZY: ’expr1’ (-- parser)
’lparens’
’atom’ <&>
’rparens’ <&> ;

"(123)" ’expr1’ parse car parse-result-parsed . =>
{ { "(" 123 } ")" }

55

This results in a very ugly parse tree. The ‘<&>’ word returns a parse tree which
is an array of the two parsers it uses. Since we have two ‘<&>’ calls we get nested
results. This can be fixed using two variants of ‘<&>’. They are ‘<&’ and ‘&>’.
These words do the same as ‘<&>’ but don’t put the result of one of the parsers in the
parse tree. The ‘>’ or ‘<’ point to the parser that will have the result returned. Here’s
a new version that has a nicer parse tree using these words:

LAZY: ’expr2’ (-- parser)
’lparens’
’atom’ &>
’rparens’ <& ;

"(123)" ’expr2’ parse car parse-result-parsed . => 123

Notice the variants of ‘<&>’ used both select the result of the ‘atom’ parser to be
included in the parse tree and not the results of the parenthesis parsers.

There is still a problem with the expression parser. It doesn’t handle more than one
‘atom’ in the expression. Similar to ‘<+>’ there is ‘<*>’ which takes a parser and
returns a new parser which when called parses zero or more instances of the original
parser. The parse tree for the result of ‘<*>’ is an array of the results of the original
parser:

LAZY: ’expr3’ (-- parser)
’lparens’
’atom’ sp <*> &>
’rparens’ <& ;

"(set a 123)" ’expr3’ parse car parse-result-parsed . =>
{ "set" "a" 123 }

This has one other change in that it needs to handle white space between atoms. The
‘sp’ word takes a parser (in this case ‘atom’) and returns a parser that first removes all
white space from the start of the input string and then calls the original parser. The
effect is to produce a parser that ignores white space.

This gets close to what out test case requires but it returns an array not a quotation.
Using ‘<@’ fixes this:

LAZY: ’expr4’ (-- parser)
’lparens’
’atom’ sp <*> &>
’rparens’ <& [>quotation] <@ ;

"(set a 123)" ’expr4’ parse car parse-result-parsed . =>
["set" "a" 123]

56 CHAPTER 11. PARSERS

Unfortunately this fails on our second test case which requires handling nested expres-
sions like ‘(+ 1 (+ 2 3) 4)’. By recursively calling the ‘expr’ word this is easy to add:

LAZY: ’expr5’ (-- parser)
’lparens’
’atom’ ’expr5’ <|> sp <*> &>
’rparens’ <& [>quotation] <@ ;

"(+ 10 (+ 20 30))" ’expr5’ parse car parse-result-parsed . =>
["+" 10 ["+" 20 30]]

This change was as simple as replacing the ‘atom’ parser used between the two paren-
thesis with a parser which checks for an atom or an expression. Note that this recur-
sively calls itself, which is safe from infinite recursion due to the lazy evaluation. It
doesn’t actually get evaluated unless the ‘atom’ test fails first. One final change is to
allow for only atoms as well as expressions and then our simple test cases work and it
is completed:

LAZY: ’expr’ (-- parser)
’atom’
’lparens’
’atom’ ’expr’ <|> sp <*> &>
’rparens’ <& [>quotation] <@ <|> ;

"(set square (lambda (n) (* n n)))" ’expr’ parse car parse-result-parsed . =>
["set" "square" ["lambda" ["n"] ["*" "n" "n"]]]

"123" ’expr’ parse car parse-result-parsed . =>
123

"hello" ’expr’ parse car parse-result-parsed . =>
"hello"

These examples should work using the parser combinators code in the current Factor
darcs repository and in the upcoming 0.85 release. I’m currently writing more docu-
mentation for the parser combinators and it will be accessable using the standard Factor
help system. The source for this example can be found here.

Chapter 12

Compilers and Interpreters

Writing compilers and interpreters in Factor is quite easy. By writing the grammar
using parser combinators, and having those combinators produce an abstract syntax
tree (AST), it’s easy to write a simple compiler or interpreter for the tree. I’ve already
covered writing simple parser combinators so I’ll concentrate on processing the AST
for a simple language in this post. A later post might generate a parser for it or it could
be an ’exercise for the reader’.

For an example to start with I took the evaluator defined in this Lambda the Ultimate
posting and converted it to Factor. For the interpreter I tried two different approaches
to compare them. The first was to use pattern matching. For the second I use generic
functions and Factor’s OO system.

For the compiler I show how to compile to Factor code, which can then be interpreted
or compiled by Factor itself, and I also compile to Javascript. This javascript can be
run in a standalone Javascript interpreter like Rhino, or in a web browser.

To more easily re-use the AST across the two examples I added the ability to pattern
match on tuples to the ‘match’ contrib library. This can be obtained from the standard
Factor git repository:

git clone git://factorcode.org/git/factor.git

The factor ‘latest’ boot images can be used to bootstrap from this repository. The
instructions on how to do this are on factorcode.org. For an Intel x86 linux machine
the steps would be:

git clone git://factorcode.org/git/factor.git
cd factor
make linux-x86-32
wget http://factorcode.org/images/latest/boot.x86.32.image
./factor -i=boot.x86.32.image

57

58 CHAPTER 12. COMPILERS AND INTERPRETERS

The examples here should also work with the released Factor 0.85 as long as you re-
place ‘contrib/match/match.factor’ with the version from my repository. To load the
‘match’ library in Factor use:

USE: match

In the Factor code snippets below I use ‘=¿’ to show the result of running Factor words.
You shouldn’t actually type that. Instead the result will be shown on the Factor stack
or you can use ‘.’ to print it.

The code for the examples in this post can be downloaded from interpreter.factor. If
you copy it into the ‘contrib’ directory of your Factor installation you can load it with:

"contrib/interpreter" require

The evaluator that is being implemented has the following description from the Lambda
the Ultimate posting:

data Term a where
Lit :: Int -> Term Int
Inc :: Term Int -> Term Int
IsZ :: Term Int -> Term Bool
If :: Term Bool -> Term a -> Term a -> Term a
Pair :: Term a -> Term b -> Term (a,b)
Fst :: Term (a,b) -> Term a
Snd :: Term (a,b) -> Term b

eval :: Term a -> a
eval (Lit i) = i
eval (Inc t) = eval t + 1
eval (IsZ t) = eval t == 0
eval (If b t e) = if eval b then eval t else eval e
eval (Pair a b) = (eval a, eval b)
eval (Fst t) = fst (eval t)
eval (Snd t) = snd (eval t)

Basically we have literal values, which in this example are integers. These can be
incremented and tested to see if they are zero. A ‘pair’ can be created and the first and
second elements obtained from the pair. An ‘if’ expression is available for testing an
expression and evaluating a true or false clause. These are represented using Factor
tuples:

TUPLE: lit i ;
TUPLE: inc t ;

59

TUPLE: isz t ;
TUPLE: iff b t e ;
TUPLE: pair a b ;
TUPLE: fst t ;
TUPLE: snd t ;

I used the same names for the types and elements as the example but changed ‘if’
to ‘iff’ to prevent clashing with Factor’s standard ‘if’ word. An example tree can be
created that is the increment of the number 5 with:

5 <lit> <inc>

When evaluated this should produce the result ‘6’.

The interpreter implementation that uses pattern matching uses ‘match-cond’. This
requires match variables to be set up which can be used to destructure sequences and
tuples. For example:

5 <lit> T{ lit f ?t } match [?t] bind => 5

‘T lit f 123 ’ is the Factor syntax for a tuple. It creates a tuple at parse time and the
actual object is stored in the word. This is different from ’123 ¡lit¿’ which will produce
the literal object at runtime. ‘?t’ is a matching variable and the ‘match’ and ‘match-
cond’ words use these to destructure matching elements of tuples and sequences. The
match variable can then be used to get the actual value obtained. For more on the Factor
pattern matching system you can read the documentation from within Factor with:

\ match help

The Factor implementation of the interpreter using pattern matching is:

: eval1 (a -- a)
{

{ T{ lit f ?i } [?i] }
{ T{ inc f ?t } [?t eval1 1+] }
{ T{ isz f ?t } [?t eval1 zero?] }
{ T{ iff f ?b ?t ?e } [?b eval1 [?t] [?e] if eval1] }
{ T{ pair f ?a ?b } [?a eval1 ?b eval1 2array] }
{ T{ fst f ?t } [?t eval1 first] }
{ T{ snd f ?t } [?t eval1 second] }

} match-cond ;

It is pretty much a direct translation of the Haskell example. An example of using it:

60 CHAPTER 12. COMPILERS AND INTERPRETERS

5 <lit> <inc> eval1 => 6

The Lambda the Ultimate post gave a usage example:

stuff = Pair (If (IsZ (Inc (Inc (Lit 5))))
(Lit 6)
(Lit 7))

(Fst (Snd (Pair (Lit 42)
(Pair (Lit 8) (Lit 9)))))

Translated to Factor it is:

: driver (-- v)
5 <lit> <inc> <inc> <isz>

6 <lit>
7 <lit>

<iff>
42 <lit> 8 <lit> 9 <lit> <pair> <pair> <snd> <fst> <pair> ;

Running the ‘eval1’ word on this produces the answer, 7 8 :

driver eval1 => { 7 8 }

Although ‘eval1’ is quite short and easy to understand it has a disadvantage in that to
extend it with new AST types you need to modify the ‘eval1’ word. Using the Factor
OO generic word system you extend the interpreter without having to modify existing
code. Here’s a generic word approach to the interpreter:

GENERIC: eval2 (a -- a)

M: lit eval2 (a -- a) lit-i ;
M: inc eval2 (a -- a) inc-t eval2 1+ ;
M: isz eval2 (a -- a) isz-t eval2 zero? ;
M: iff eval2 (a -- a) dup iff-b eval2 [iff-t] [iff-e] if eval2 ;
M: pair eval2 (a -- a) dup pair-a eval2 swap pair-b eval2 2array ;
M: fst eval2 (a -- a) fst-t eval2 first ;
M: snd eval2 (a -- a) snd-t eval2 second ;

The ‘M:’ word is used to define a method for a generic word. This is similar to how
generic functions and methods work in CLOS and Dylan. When a generic word is
called the actual method invoked is based on the topmost item of the stack. The first
symbol past the ‘M:’ is the type of that object that that method is for. The second is
the name of the generic word the method will be added too. The rest of the definitions
should be reasonably clear - they break apart the tuples and return results or call ‘eval2’
recursively. ‘eval2’ produces the same result as ‘eval1’:

61

driver eval2 => { 7 8 }

Which approach to use is really personal preference. Of the two, ‘eval2’ is the most
efficient. This is because methods can be compiled in Factor whereas the current im-
plementation of ‘match-cond’ cannot be. So ‘eval1’ will run in the Factor interpreter
whereas ‘eval2’ will be compiled to native code. This can be seen by trying to compile
the examples and running a timed test:

\ eval1 compile => "The word eval1 does not have a stack effect"
\ eval2 compile
\ eval1 compiled? => f
\ eval2 compiled? => t
[1000 [driver eval1] times] time => 487ms run / 5 ms GC time
[1000 [driver eval2] times] time => 3ms run / 0 ms GC time

There is obviously room for improvement in the ‘match’ routines! I can say that be-
cause I wrote them :)

A compiler follows the same structure as the interpreter but instead of computing the
result we generate code. This code is then later fed to the compiler. For the compiler
examples I’m only going to show the pattern matching based example. The generic
word implementation is very similar and would follow the relevant interpreter imple-
mentation.

Factor provides a ‘make’ word that can be used for dynamically appending to a new
sequence. From within a ‘make’ scope you can use ‘,’ to append an element and ‘%’ to
splice in a sequence to the constructed sequence. ‘make’ can be used for constructing
arrays, strings, quotations, etc. The type of the constructed sequence is identified by an
exemplar sequence passed to ‘make’. For example:

[1 , 2 , { 3 4 } % { 5 } ,] { } make => { 1 2 3 4 { 5 } }

The top level ‘compile’ word will set up a ‘make’ scope for the AST compile routines
to append to. Here’s the compiler to Factor:

: (compile1) (a --)
{

{ T{ lit f ?i } [?i ,] }
{ T{ inc f ?t } [?t (compile1) \ 1+ ,] }
{ T{ isz f ?t } [?t (compile1) \ zero? ,] }
{ T{ iff f ?b ?t ?e } [?b (compile1)

[?t (compile1)] [] make ,
[?e (compile1)] [] make ,
\ if ,] }

{ T{ pair f ?a ?b } [?a (compile1) ?b (compile1) \ 2array ,] }

62 CHAPTER 12. COMPILERS AND INTERPRETERS

{ T{ fst f ?t } [?t (compile1) \ first ,] }
{ T{ snd f ?t } [?t (compile1) \ second ,] }

} match-cond ;

: compile1 (a -- quot)
[(compile1)] [] make ;

As you can see it is very similar to the interpreter. Instead of returning the result of
the AST evaluation ‘(compile1)’ appends the equivalent Factor code to the constructed
quotation created in the ‘compile1’ word.

The implementation for handling ‘lit’ just appends the numeric value directly. For
‘inc’ it calls ‘(compile1)’ on the term to be incremented so that gets appended to the
quotation. It then appends the Factor ‘1+’ word which will be used to increment it. The
‘ı́s an escape mechanism to tell Factor to store the word itself rather than call it.

The main complication is in the implementation of ‘iff’. This word must delay the
computation of the two terms of the ‘iff’ statement. To to this it creates Factor quo-
tations with ‘make’ and then recursively calls ‘(compile1)’ for the terms. The results
of the compilation for this recursive call will be stored in the most recently created
quotation rather than the one in the top level ‘compile1’ word. That is, nested ‘make’
calls are dynamically scoped.

An example of usage of the compiler:

5 <lit> <inc> compile1 => [5 1 +]
[5 1 +] call => 6

The ‘driver’ AST shown previously compiles to Factor correctly:

driver compile1 => [
5 1+ 1+ zero? [

6
] [

7
] if 42 8 9 2array 2array second first 2array

]

This can be compiled to native code using Factor or run in the Factor interpreter:

driver compile1 compile-quot execute => { 7 8 }
driver compile1 call => { 7 8 }

The final example is a compiler to Javascript. Again it follows the same basic outline
of the interpreter. Instead of generating a Factor quotation it uses ‘make’ to generate a
string:

63

: (compile2) (a --)
{

{ T{ lit f ?i } [?i number>string %] }
{ T{ inc f ?t } [?t (compile2) "+1" %] }
{ T{ isz f ?t } [?t (compile2) "== 0" %] }
{ T{ iff f ?b ?t ?e } [

"function() {if(" %
?b (compile2)
") {return " %
?t (compile2)
"} else { return " %
?e (compile2)
"}}()" %

]
}
{ T{ pair f ?a ?b } ["{ first:" % ?a (compile2) ",second:" % ?b (compile2) " }" %] }
{ T{ fst f ?t } [?t (compile2) ".first" %] }
{ T{ snd f ?t } [?t (compile2) ".second" %] }

} match-cond ;

: compile2 (a -- quot)
["(" % (compile2) ")" %] "" make ;

The main complication with this compiler was handling ‘if’. The Javascript ‘if’ has
no result so cannot be assigned immediately. So I wrap the ‘if’ in a function which is
called immediately. The two terms of the ‘if’ use ‘return’ to return the result from the
function. A simple example:

5 <lit> <inc> compile2 => "(5+1)"

And ‘driver’ also compiles successfully:

driver compile2 =>
"({

first:function() {
if(5+1+1== 0) {

return 6
} else {

return 7
}

}(),
second: {

first:42,
second: { first:8,second:9 }

}.second.first
})"

64 CHAPTER 12. COMPILERS AND INTERPRETERS

This result evaluates successfully in a browser. You can test it by clicking here.

Chapter 13

Web Applications

There are a number of different ways of writing web applications in Factor but for this
approach I’m using the furnace framework.

The first step is to start the web server. This lives in the vocab http.server:

USE: http.server
[8888 httpd] in-thread

This will start an instance of the server on port 8888 in another thread, to allow us to
continue to enter commands in the listener.

By default web applications are accessed on the URL path /responder/name,
where name is the name of the web application.

Accessing the web application path runs an ‘action’. An action produces HTML output
which gets sent back to the client browser. A web application has a default ‘action’ that
gets run (the equivalent of an index.html), and can have other actions that are specified
in the URL. Some examples:

http://localhost:8888/responder/foo
Runs the default action for the ’foo’ web application

http://localhost:8888/responder/foo/doit
Runs the ’doit’ action

http://localhost:8888/responder/foo/hello?name=chris
Runs the ’hello’ action giving the argument ’name’ with the value ’chris’

The syntax for furnace URL’s is therefore http://servername:port/responder/[webappname]/[action]?[arguments]

Furnace web application must exist under the webapps vocabulary. So accessing
/responder/foo will look for furnace details in the vocabulary webapps.foo.

A furnace web application is registered with the http server using the web-app word.
It takes three arguments on the stack.

65

66 CHAPTER 13. WEB APPLICATIONS

Vocabulary: furnace
Word: web-app (name default path --)

The name is the vocabulary name of the web application with out the webapps prefix.
default is the name of the action that gets run when the web application URL is
accessed. path is the location of any template files the web application uses.

An action is a word that outputs data to be sent to the browser. It can be as simple as:

: doit (--) serving-text "I am here" print ;

The word must be registered as an action:

\ doit { } define-action

Now accessing the URL for the web application with doit at the end of the path will
result in ‘I am here’ being sent to the browser. Note the serving-text call. That
outputs the headers for the mime type and the standard HTTP response. There is also
a serving-html, or you could write the headers manually.

Actions can take arguments. These are placed on the stack for the word that is called:

: hello (name --) serving-text "Hello " write print ;
\ hello { { "hello" } } define-action

So the complete code for the simplest of web applications is:

USE: http.server
[8888 httpd] in-thread
IN: webapps.test
USE: furnace

: index serving-text "We’re alive!" print ;
\ index { } define-action

: hello (name --) serving-text "Hello " write print ;
\ hello { { "name" } } define-action

"test" "index" "." web-app

Accessing http://localhost:8888/responder/test will run the ‘index’
action. This is what we passed as the ‘default’ parameter on the stack to the ‘web-app’
word. Accessing http://localhost:8888/responder/test/hello?name=chris
will run the ‘hello’ action.

There is also the facility to have template files, very much like JSP. The ‘path’ param-
eter to web-app defines the location of these. Inside your action word you can call
‘render-template’ to run the template and have it sent to the browser:

67

: runme (--) f "page" "Title" render-template ;
\ runme { } define-action

This will load the ‘page.furnace’ file in the path given to ‘web-app’. It should contain
standard HTML with embedded Factor code inside <% and %> tags. It will be run
and sent to the client. The ‘f’ passed in this example can be an instance of a tuple (an
object) and the template can access the slots of that instance to display data, etc.

There is quite a bit more that can be done. There is a continuation based workflow
system, validators for actions, etc. There is also much more that needs to be done.
handling sessions, cookies, etc. Hopefully this post gives a quick introduction and
allows you to get started.

68 CHAPTER 13. WEB APPLICATIONS

Chapter 14

Continuation Based Web Apps

14.1 Overview

The ‘cont-responder’ library is a continuation based web server for writing web appli-
cations in Factor. Each ‘web application’ is a standard Factor httpd responder.

This document outlines how to write simple web applications using ‘cont-responder’
by showing examples. It does not attempt to go into the technical details of continuation
based web applications or how it is implemented in Factor. Instead it uses a series of
examples that can be immediately tried at the Factor prompt to get a feel for how things
work.

14.2 Getting Started

To get started you will first need to use the ‘cont-responder’ vocabulary:

USE: cont-responder

The responders that you will be writing will require an instance of the httpd server to
be running. It will be run in a background thread to enable the interactive development
of the applications. The following is a simple function to start the server on port 8888:

USE: httpd
USE: threads
: start-httpd [8888 httpd] in-thread ;
start-httpd

69

70 CHAPTER 14. CONTINUATION BASED WEB APPS

14.3 Responders

A ‘responder’ is a word that is registered with the httpd server that gets run when the
client accesses a particular URL. When run that word has ‘standard output’ bound in
such a way that all output goes to the clients web browser.

In the ‘cont-responder’ system there are two words used to set output to go to the web
browser and display a page. They are ‘show’ and ‘show-final’. Think of them as ‘show
a page to the client’. ‘show’ and ‘show-final’ both take a single item on the stack and
that is a ‘page generation’ quotation.

A ‘page generation’ quotation is a quotation which when called will output HTML to
stdout. In the httpd system, stdout is bound to the socket connection to the clients web
browser.

The ‘page generation’ quotation passed to ‘show’ should have stack effect (string –)
while that for ‘show-final’ has stack effect (–). The two words have very similar uses.

The big difference is with ‘show’. It provides an URL to the page generation quotation
that when requested will proceed with execution immediately following the ‘show’,
and any POST request data will be on the stack. With ‘show-final’ no URL is passed
so it is not possible to ‘resume’ computation. This is explained more fully later.

14.4 Hello World 1

A simple ‘hello world’ responder would be:

: hello-world1 (--)
[

"<html><head><title>Hello World</title></head>" write
"<body>Hello World!</body></html>" write

] show-final ;

When installed this will show a single page which is simple HTML to display ‘Hello
World¡.

The responder is installed using:

"helloworld1" [hello-world1] install-cont-responder

The ‘install-cont-responder’ word has stack effect (name quot –). It installs a respon-
der with the given name.

When the URL for that responder is accessed the ‘quot’ quotation is run. In this case it
is ‘hello-world1’ which displays the single HTML page described previously.

Accessing the above responder from a web browser is via an URL like:

14.5. HTML GENERATION 71

http://localhost:8888/responder/helloworld1

This should display an HTML page showing “Hello World!”.

14.5 HTML Generation

Generating HTML by writing strings containing HTML can be a bit of a chore. Espe-
cially when the content is dynamic requiring concatenation of many pieces of data.

The ‘cont-responder’ system uses ‘html’, a library that allows writing HTML looking
output directly in factor. This system, developed for ‘cont-responder’, has recently
been made part of the standard ‘html’ library of Factor.

‘html’ basically allows you to write HTML-like output in a factor word and it will be
output as correct HTML. It can be tested at the console very easily:

USE: html
<p> "This is a paragraph" write </p>

=> <p>This is a paragraph</p>

You can write open and close tags like ordinary HTML and anything sent to standard
output in between the tags will be enclosed in the specified tags. Attributes can also be
used:

<p "text-align: center" =style p> "More text" write </p>
=> <p style=’text-align: center’>More text</p>

The attribute must be seperated from the value of that attribute via whitespace. If you
are using attributes the tag must be closed with a ‘[tagname]>’ where the [tagname] is
the name of the tag used. See the ‘<p p>’ example above.

You can use any factor code at any point:

"text-align: " "red"
<p 2dup cat2 =style p>

"Using style " write swap write write
</p>

=> <p style=’text-align: red’>Using style text-align: red</p>

Tags that are not normally closed are written using XML style closed tag (ie. with a
trailing slash):

"One" write
 "Two" write
 <input "text" =type input/>
=> One
Two
<input type=’text’>

72 CHAPTER 14. CONTINUATION BASED WEB APPS

14.6 Hello World 2

Using the HTML generation library makes writing responders more readable. Here is
the hello world example perviously using this system:

: hello-world2 (--)
[

<html>
<head> <title> "Hello World" write </title> </head>
<body> "Hello World!" write </body>

</html>
] show-final ;

Install it using:

"helloworld2" [hello-world2] install-cont-responder

14.7 Dynamic Data

Adding dynamic data to the page is relatively easy. This example pulls information
from the ‘room’ word which returns memory details about the running Factor system.
It also uses ‘room.’ which outputs these details to standard output and this is wrapped
in a <pre> tag so it is formatted correctly.

: memory-stats1 (--)
[

<html>
<head> <title> "Memory Statistics" write </title> </head>
<body>

<table "1" =border table>
<tr>

<td> "Total Data Memory" write </td>
<td> room unparse write </td>

</tr>
<tr>

<td> "Free Data Memory" write </td>
<td> unparse write </td>

</tr>
<tr>

<td> "Total Code Memory" write </td>
<td> unparse write </td>

</tr>
<tr>

14.8. SOME SIMPLE FLOW 73

<td> "Free Code Memory" write </td>
<td> unparse write </td>

</tr>
</table>

</body>
<pre> room. </pre>

</html>
] show-final ;

"memorystats1" [memory-stats1] install-cont-responder

Accessing this page will show a table with the current memory statistics. Hitting re-
fresh will update the page with the latest information.

The HTML output can be refactored into different words. For example:

: memory-stats-table (free total --)
#! Output a table containing the given statistics.
<table "1" =border table>

<tr>
<td> "Total Data Memory" write </td>
<td> unparse write </td>

</tr>
<tr>

<td> "Free Data Memory" write </td>
<td> unparse write </td>

</tr>
</table> ;

: memory-stats2 (--)
[

<html>
<head> <title> "Memory Statistics 2" write </title> </head>
<body> room memory-stats-table 2drop </body>

</html>
] show-final ;

"memorystats2" [memory-stats2] install-cont-responder

14.8 Some simple flow

The big advantage with continuation based web servers is being able to write a web
application in a standard procedural flow and have it correctly served up in the HTTP
request/response model.

74 CHAPTER 14. CONTINUATION BASED WEB APPS

This example demonstates a flow of three pages. Clicking an URL on the first page
displays the second. Clicking an URL on the second displays the third.

When a ‘show’ call is executed the page generated by the quotation is sent to the client.
The computation of the responder is then ‘suspended’. When the client accesses a
special URL, computation is resumed at the point of the end of the ‘show’ call. In this
way procedural flow is maintained.

This brings us to the ‘URL’ stack item that is available to the ‘page generation’ quota-
tion passed to ‘show’. This URL is a string that contains an URL that can be embedded
in the page. When the user access that URL, computation is resumed from the point of
the end of the ‘show’ call as described above:

: flow-example1 (--)
[

<html>
<head> <title> "Flow Example 1" write </title> </head>
<body>

<p> "Page 1" write </p>
<p> <a =href a> "Press to continue" write </p>

</body>
</html>

] show drop
[

<html>
<head> <title> "Flow Example 1" write </title> </head>
<body>

<p> "Page 2" write </p>
<p> <a =href a> "Press to continue" write </p>

</body>
</html>

] show drop
[

<html>
<head> <title> "Flow Example 1" write </title> </head>
<body>

<p> "Page 3" write </p>
</body>

</html>
] show-final ;

"flowexample1" [flow-example1] install-cont-responder

The ‘flow-example1’ word contains two ‘show’ calls in a row, followed by a ‘show-
final’. The ‘show’ calls display simple pages with an anchor link to the URL received
on the stack. This URL when accessed resumes the computation. The final page

14.8. SOME SIMPLE FLOW 75

doesn’t require resumption of the computation so ‘show-final’ is used. We could have
used ‘show’ and dropped the URL passed to the quotation and the result following the
‘show’ but using ‘show-final’ is more efficient.

When you display this example in the browser you’ll be able to click the URL to
navigate. You can use the back button to retry the URL’s, you can clone the browser
window and navigate them independantly, etc.

The similarity of the functions above shows that some refactoring would be useful. The
pages are almost exactly the same so we seperate this into a seperate word:

: show-flow-page (n bool --)
#! Show a page in the flow, using ’n’ as the page number
#! to display. If ’bool’ is true display a link to the
#! next page.
[(n bool url --)

<html>
<head> <title> "Flow Example 1" write </title> </head>
<body>

<p> "Page " write rot unparse write </p>
swap [

<p> <a =href a> "Press to continue" write </p>
] [

drop
] ifte

</body>
</html>

] show 3drop ;

: flow-example2 (n --)
#! Display the given number of pages in a row.
dup 1 - [dup 1 + t show-flow-page] repeat
f show-flow-page ;

"flowexample2" [5 flow-example2] install-cont-responder

In this example the ‘show-flow-page’ pulls the page number off the stack. It also gets
whether or not to display the link to the next page.

Notice that after the show that a ‘3drop’ is done whereas previously we’ve only done a
single ‘drop’. This is due to a side effect of ‘show’ using continuations.

After the ‘show’ call returns there will be one item on the stack (which we’ve been
dropping and will explain later what it is). The stack will also be set as it was before
the show call. So in this case the ‘n’ and ‘bool’ remain on the stack even though they
were removed during the page generation quotation. This is because we resumed the
continuation which, when captured, had those items on the stack. The general rule of
thumb is you will need to account for items on the stack before the show call.

76 CHAPTER 14. CONTINUATION BASED WEB APPS

This example also demonstrates using the ‘repeat’ combinator to sequence the page
shows. Any Factor code can be called and the continuation based system will se-
quentially display each page. The back button, browser window cloning, etc will all
continue to work.

You’ll notice the URL’s in the browser have an ‘id’ query parameter with a sequence
of characters as its value. This is the ‘continuation identifier’ which is like a session id
except that it identifies not just the data you have stored but your location within the
responder as well.

14.9 Forms and POST data

The web pages we’ve generated so far don’t accept input from the user. I’ve mentioned
previously that ‘show’ returns a value on the stack and we’ve been dropping it in our
examples.

The value returned is a namespace containing the field names and values of any POST
data in the request. If no POST data exists then it is the boolean value ‘f’.

To process input from the user just put a form in the HTML with a method of ‘POST’
and an action set to the URL passed in to the page generation quotation. The show call
will then return a namespace containing this data. Here is a simple example:

: accept-users-name (-- name)
#! Display an HTML requesting the users name. Push
#! the name the user input on the stack..
[

<html>
<head> <title> "Please enter your name" write </title> </head>
<body>

<form =action "post" =method form>
<p>

"Please enter your name:" write
<input "text" =type "20" =size "username" =name input/>
<input "submit" =type "Ok" =value input/>

</p>
</form>

</body>
</html>

] show [
"username" get

] bind ;

: post-example1 (--)
[

14.10. ASSOCIATING URL’S WITH WORDS 77

<html>
<head> <title> "Hello!" write </title> </head>
<body>

<p> accept-users-name write ", Good to see you!" write </p>
</body>

</html>
] show-final ;

"post-example1" [post-example1] install-cont-responder

The ‘accept-users-name’ word displays an HTML form allowing input of the name.
When that form is submitted the namespace containing the data is returned by ‘show’.
We bind to it and retrieve the ‘username’ field. The name used here should be the same
name used when creating the field in the HTML.

‘post-example1’ then does something a bit tricky. Instead of first calling ‘accept-users-
name’ to push the name on the stack and then displaying the resulting page we call
‘accept-users-name’ from within the page itself when we actually need it. The magic
of the continuation system causes the ‘accept-users-name’ to be called when needed
displaying that page first. It is certainly possible to do it the other way though:

: post-example2 (--)
accept-users-name
[(name url --)

<html>
<head> <title> "Hello!" write </title> </head>
<body>

<p> write ", Good to see you!" write </p>
</body>

</html>
] show-final ;

"post-example2" [post-example2] install-cont-responder

14.10 Associating URL’s with words

A web page can contain URL’s that when clicked perform some action. This may be
to display other pages, or to affect some server state.

The ‘cont-responder’ system enables an URL to be associated with any Factor quota-
tion. This quotation will be run when the URL is clicked. When that quotation exits
control is returned to the page that contained the call.

The word that enables this is ‘quot-href’. It takes two items on the stack. One is the
text to display for the link. The other is the quotation to run when the link is clicked.
This quotation should have stack effect (–).

78 CHAPTER 14. CONTINUATION BASED WEB APPS

This example displays a number which can be incremented or decremented.

0 "counter" set

: counter-example1 (-)
#! Display a global counter which can be incremented or decremented
#! using anchors.
[

<html>
<head>

<title> "Counter: " write "counter" get unparse dup write </title>
</head>
<body>

<h2> "Counter: " write write </h2>
<p> "++" ["counter" get 1 + "counter" set] quot-href

"--" ["counter" get 1 - "counter" set] quot-href
</p>

</body>
</html>

] show-final ;

"counter-example1" [counter-example1] install-cont-responder

Accessing this example from the web browser will display a count of zero. Clicking
‘++‘ or ‘–‘ will increment or decrement the count respectively. This is done by calling
a quotation that either increments or decrements the count when the URL’s are clicked.

Because the count is ‘global’ in this example, if you clone the browser window with
the count set to a specific value and increment it, and then refresh the original browser
window you will see the most recent incremented state. This gives you ‘shopping
cart’ like state whereby using the back button or cloning windows shows a view of a
single global value that can be modified by all browser instances. ie. The state is not
backtracked when the back button is used.

You’ll notice that when you visit the root URL for the responder that the count is reset
back to zero. This is because when the responder was installed the value of zero was
in the namespace stack. This stack is copied when the responder is installed resulting
in initial accesses to the URL having the starting value. This gives you ‘server side
session data’ for free.

14.11 Local State

You can also have a counter value with ‘local’ state. That is, cloning the browser
window will give you a new independant state value that can be incremented. Going
to the original browser window and refreshing will show the original value which can

14.12. CALLING ‘SUBROUTINES’ 79

be incremented or decremented seperately from that value in the cloned window. With
this type of state, using the back button results in ‘backtracking’ the state value.

A way to get ‘local’ state is to store values on the stack itself rather than a namespace:

: counter-example2 (count -)
[(count URL --)

<html>
<head>

<title> "Counter: " write dup unparse write </title>
</head>
<body>

<h2> "Counter: " write dup unparse write </h2>
<p> "++" over [1 + counter-example2] cons quot-href

"--" swap [1 - counter-example2] cons quot-href
</p>

</body>
</html>

] show-final ;

"counter-example2" [0 counter-example2] install-cont-responder

This example works by taking the value of the counter and consing it to a code quota-
tion that will increment or decrement it then call the responder again. So if the counter
value is ‘5’ the two ‘quot-href’ calls become the equivalent of:

"++" [5 1 + counter-example2] cons quot-href
"--" [5 1 - counter-example2] cons quot-href

Because it calls itself with the new count value the state is remembered for that page
only. This means that each page has an independant count value. You can clone or use
the back button and all browser windows have an independant value.

14.12 Calling ‘Subroutines’

Being able to call other page display functions from ‘quot-href’ gives you subroutine
like functionality in your web pages. A simple menu that displays a sequence of pages
and returns back to the main page is very easy:

: show-page (n --)
#! Show a page in the flow, using ’n’ as the page number
#! to display.
[(n url --)

80 CHAPTER 14. CONTINUATION BASED WEB APPS

<html>
<head> <title> "Page " write over unparse write </title> </head>
<body>

<p> "Page " write swap unparse write </p>
<p> <a =href a> "Press to continue" write </p>

</body>
</html>

] show 2drop ;

: show-some-pages (n --)
#! Display the given number of pages in a row.
[dup 1 + show-page] repeat ;

: subroutine-example1 (--)
[

<html>
<head> <title> "Subroutine Example 1" write </title> </head>
<body>

<p> "Please select:" write

 "Flow1" [1 show-some-pages] quot-href
 "Flow2" [2 show-some-pages] quot-href
 "Flow3" [3 show-some-pages] quot-href

</p>

</body>
</html>

] show-final ;

"subroutine-example1" [subroutine-example1] install-cont-responder

Each item in the ordered list is an anchor. When pressed they will call a quotation that
displays a certain number of pages in a row. When that quotation finishes via dropping
off the end the main menu page is displayed again.

14.13 Simple Testing

Sometimes it is useful to test the responder words from the console instead of accessing
it via a web browser. This enables you to step through or quickly check to see if a word
is generating HTML correctly.

Because the responders require some state associated with them to keep track of con-
tinuation id’s and other things you can’t usually just run them and expect them to work.
The ‘show’ call for example will fail as it expects some continuations to in the contin-
uation table for that responder.

14.13. SIMPLE TESTING 81

The ‘cont-testing.factor’ file (in the contrib/cont-responder directory) contains some
simple words that maintains this state for you in such a way that you can test the words
from the console:

"/contrib/cont-testing/load.factor" run-resource

For this example we’ll call the ‘subroutine-example1’ responder from above. First we
need to put a ‘testing state’ object on the stack. All the testing functions expect this on
the stack and return it after they have been called. We then put a quotation on the stack
which calls the code we want to test and call the ‘test-cont-function’ word:

<cont-test-state> [subroutine-example1] test-cont-function
=>

HTTP/1.1 302 Document Moved
Location: ?id=8209741119458310
Content-Length: 0
Content-Type: text/plain

The first request is often a ‘Document Moved’ as above. This is because by default the
‘cont-responder’ system does the ‘Post-Refresh-Get’ pattern which results in a redirect
after each request. This can be disabled but we’ll work through the example with it
enabled.

We can see the continuation id where we are ‘moved’ to in the ‘Location’ header. To
access this we use the ‘test-cont-click’ function. Think of this as manually clicking the
URL. ‘test-cont-click’ has stack effect (state url post – state). ‘post’ is a hashtable of
post data to pass along with the request. We use ‘f’ here because we have no post data.
Remember that our previous ‘test-cont-function’ call left the state on the stack:

"8209741119458310" f test-cont-click
=>

HTTP/1.0 200 Document follows
Content-Type: text/html
<html><head><title>Subroutine Example 1</title></head>

<body><p>Please select:
Flow1

Flow2
Flow3

</p>

</body>
</html>

We can continue to drill down using ‘test-cont-click’ using the URL’s above to see the
HTML for each ‘click’.

Here’s an example using post data. We’ll test the ‘post-example1’ word written previ-
ously:

82 CHAPTER 14. CONTINUATION BASED WEB APPS

<cont-test-state> [post-example1] test-cont-function
=>

HTTP/1.1 302 Document Moved
Location: ?id=5829759941409535
Content-Length: 0
Content-Type: text/plain

Again we skip past the forward:

"5829759941409535" f test-cont-click
=>

HTTP/1.0 200 Document follows
Content-Type: text/html

<html><head><title>Please enter your name</title></head>
<body>

<form action=’?id=5456539333180428’ method=’post’>
<p>Please enter your name:

<input type=’text’size=’20’name=’username’>
<input type=’submit’value=’Ok’>

</p>
</form>

</body>
</html>

Now we submit the post data along to the ‘action’ url:

"5456539333180428" [[["username" "Chris"]]] alist>hash test-cont-click
=>

HTTP/1.0 200 Document follows
Content-Type: text/html

<html>
<head><title>Hello!</title></head>
<body>

<p>Chris, Good to see you!</p>
</body>

</html>

As you can see the post data was sent correctly.

Chapter 15

Parsing Expression Grammars

I’m working on a new parser combinator library for Factor based on Parsing Expression
Grammars and Packrat parsers. This is based on what I learnt from writing a packrat
parser in Javascript.

It’s progressing quite well and already fixes some problems in the existing parser com-
binator library I wrote. The main issue with that one is it’s not tail recursive and some
combinations of parsers can run out of call stack.

The new library is in the peg vocabulary. I haven’t yet implemented the packrat side
of things though so it is slow on large grammars and inputs.

I’ve also done a proof of concept of something I’ve been meaning to do for awhile.
That is writing a parser for EBNF (or similar) that produces Factor code in the form
of parser combinators to implement the described grammar. The code for this is in
the peg.ebnf vocabulary. It allows you to embed an EBNF-like language and have
Factor words generated for each rule:

<EBNF
digit = ’1’ | ’2’ | ’3’ | ’4’ .
number = digit digit .
expr = number (’+’ | ’-’) number .
EBNF>

This example would create three Factor words. digit, number and expr. These
words return parsers that can be used as normal:

"123" number parse
"1" digit parse
"1+243+342" expr parse

The EBNF accepted allows for choice, zero or more repetition, optional (exactly 0 or
1), and grouping. The generated AST is pretty ugly so by default it works best as a
syntax checker. You can modify the generated AST with action productions:

83

84 CHAPTER 15. PARSING EXPRESSION GRAMMARS

<EBNF
digit = ’1’ | ’2’ | ’3’ | ’4’ => convert-to-digit .
number = digit digit => convert-to-number .
expr = number ’+’ number => convert-to-expr .
EBNF>

An action is a factor word after the =>. The word receives the AST produced from the
rule on the stack and it can replace that with a new value that will be used in the AST.
So convert-to-expr above might produce a tuple holding the expression values
(by default, a sequence of terms in the rule are stored in a vector):

TUPLE: ast-expr lhs operator rhs ;
C: <ast-expr> ast-expr
: convert-to-expr (old -- new)

first3 <ast-expr> ;

The generated code is currently pretty ugly, mainly due to it being a quick proof of
concept. I’ll try doing a few grammars and tidy it up, changing the interface if needed,
as I go along.

As an experiment I did a grammar for the PL/0 programming language. It’s in peg.pl0.
The grammar from the wikipedia article is:

program = block "." .

block = ["const" ident "=" number "," ident "=" number ";"]
["var" ident "," ident ";"]
"procedure" ident ";" block ";" statement .

statement = [ident ":=" expression | "call" ident |
"begin" statement ";" statement "end" |
"if" condition "then" statement |
"while" condition "do" statement].

condition = "odd" expression |
expression ("="|"#"|"<"|"<="|">"|">=") expression .

expression = ["+"|"-"] term ("+"|"-") term.

term = factor ("*"|"/") factor.

factor = ident | number | "(" expression ")".

The Factor grammar is very similar:

: ident (-- parser)

15.1. PARSING ARITHMETIC EXPRESSIONS 85

CHAR: a CHAR: z range
CHAR: A CHAR: Z range 2array choice repeat1
[>string] action ;

: number (-- parser)
CHAR: 0 CHAR: 9 range repeat1 [string>number] action ;

<EBNF
program = block ’.’ .
block = [’const’ ident ’=’ number { ’,’ ident ’=’ number } ’;’]

[’var’ ident { ’,’ ident } ’;’]
{ ’procedure’ ident ’;’ [block ’;’] } statement .

statement = [ident ’:=’ expression | ’call’ ident |
’begin’ statement {’;’ statement } ’end’ |
’if’ condition ’then’ statement |
’while’ condition ’do’ statement] .

condition = ’odd’ expression |
expression (’=’ | ’#’ | ’<=’ | ’<’ | ’>=’ | ’>’) expression .

expression = [’+’ | ’-’] term {(’+’ | ’-’) term } .
term = factor {(’*’ | ’/’) factor } .
factor = ident | number | ’(’ expression ’)’
EBNF>

This grammar as defined works and can parse PL/0 programs. I’ll extend this as I
improve the EBNF routines, adding actions, etc to generated a decent AST.

15.1 Parsing Arithmetic Expressions

This is it without parenthesis handling. I’ll leave it as an exercise to add that. I included
code to compile the ast into a factor expression. Use like:

"2+3*4-6/2" expr parse parse-result-ast .

"2+3*4-6/2" expr parse parse-result-ast ast-compile dup .

"2+3*4-6/2" expr parse parse-result-ast ast-compile call

The grammar is a direct translation of the one shown in the wikipedia peg article:

http://en.wikipedia.org/wiki/Parsing_expression_grammar

The only complication is transforming the result of using ’repeat0’ into a tree by doing
a fold. This is standard practice with parsing expression grammars that don’t handle
left recursion. When I add left recursion this won’t be needed and the grammar will be
simplified. See this article for details:

86 CHAPTER 15. PARSING EXPRESSION GRAMMARS

http://vpri.org/pdf/packrat_TR-2007-002.pdf

USING: sequences kernel math words math.parser namespaces peg ;
IN: scratchpad

: seq* (quot -- parser)
{ } make seq ; inline

: choice* (quot -- parser)
{ } make choice ; inline

TUPLE: operator lhs op rhs ;
C: <operator> operator

: operator-fold (lhs seq -- value)
#! Perform a fold of a lhs, followed by a sequence of pairs being
#! { operator rhs } in to a tree structure of the correct precedence.
swap [first2 <operator>] reduce ;

: digits (-- parser)
CHAR: 0 CHAR: 9 range repeat1 [string>number] action ;

: plus (-- parser)
"+" token ;

: minus (-- parser)
"-" token ;

: multiply (-- parser)
"*" token ;

: divide (-- parser)
"/" token ;

DEFER: expr

: value (-- parser)
[digits , [expr] delay ,] choice* ;

: product (-- parser)
[

value ,
[

[multiply , divide ,] choice* ,
value ,

] seq* repeat0 ,

15.1. PARSING ARITHMETIC EXPRESSIONS 87

] seq* [first2 operator-fold] action ;

: sum (-- parser)
[

product ,
[

[plus , minus ,] choice* ,
product ,

] seq* repeat0 ,
] seq* [first2 operator-fold] action ;

: expr (-- parser)
sum ;

GENERIC: (compile) (ast --)

M: number (compile) (ast --)
, ;

M: operator (compile) (ast --)
dup operator-lhs (compile)
dup operator-rhs (compile)
operator-op "math" lookup , ;

: ast-compile (ast -- quot)
[(compile)] [] make ;

88 CHAPTER 15. PARSING EXPRESSION GRAMMARS

Chapter 16

Factor to Javascript Compiler

Factor to Javascript compiler to be described here.

89

90 CHAPTER 16. FACTOR TO JAVASCRIPT COMPILER

Chapter 17

Git Repository

17.1 How to publish a git repository

To set up a repository on a server you should clone the existing Factor repository using
the ‘–bare’ option:

git clone --bare http://www.factorcode.org/git/factor.git factor.git

A bare repository is one without a checked out working copy of the code. It only
contains the git database. As a general rule you should never push into a repository that
contains changes in the working copy. To ensure this doesn’t happen, we’re making
the server repository a bare repository - it has no working copy.

Copy the ‘factor.git’ directory onto your server. I put it in ‘/git/factor.git’. Now if you
have changes on your local machine that you want to push to your repository you can
use something like:

git push yourname@yourserver.com:/git/factor.git

If you want to push changes from a specific branch in your local repository:

git push yourname@yourserver.com:/git/factor.git mybranch:master

To publish the remote repository you have two options. You can publish via the HTTP
protocol, or via the git protocol. The first is slower but usable by people behind restric-
tive firewalls, while the second is more efficient but requires an open port. I suggest
doing both.

To publish via HTTP, you must make the file ‘hooks/post-update’ executable:

91

92 CHAPTER 17. GIT REPOSITORY

chmod +x /git/factor.git/hooks/post-update

This gets executed whenever something is pushed to the repository. It runs a command
‘git-update-server-info’ which updates some files that makes the HTTP retrieval work.
You should also run this once manually:

cd /git/factor.git
git-update-server-info

Now make the /git directory published via your webserver (I symbolic link to it in the
server’s doc-root). People can pull from the repository with:

git pull http://yourserver.com/git/factor.git

To set up the git protocol you need to run the ‘git-daemon’ command. You pass it a di-
rectory which is the root of your git repositories. It will make public all git repositories
underneath that root that have the file ‘git-daemon-export-ok’ in it. So first create this
file:

touch /git/factor.git/git-daemon-export-ok

Run the daemon with:

git-daemon --verbose /git

The ‘–verbose’ will give you output showing the results of connecting to it. I run this
from within a screen session. You can set it up to automatically run using whatever
features your server OS has. Now people can retrieve via the git protocol:

git pull git://yourserver.com/git/factor.git

My repository is accessible from both protocols:

git clone http://www.double.co.nz/git/factor.git
git clone git://double.co.nz/git/factor.git

17.2. BINARY FILES 93

17.2 Binary Files

Git has a heuristic for detecting binary files. You can force other file types to be binary
by adding a .gitattributes file to your repository. This file contains a list of glob pat-
terns, followed by attributes to be applied to files matching those patterns. By adding
.gitattributes to the repository all cloned repositories will pick this up as well.

For example, if you want all *.foo files to be treated as binary files you can have this
line in .gitattributes:

*.foo -crlf -diff -merge

This will mean all files with a .foo extension will not have carriage return/line feed
translations done, won’t be diffed and merges will result in conflicts leaving the original
file untouched.

Now when you pull from another repository that has changes to a .foo file you’ll see
something like:

test.foo | Bin 32 -> 36 bytes

Note that it shows it is a binary file. If you pull from another repository with changes
to test.foo you’ll get:

Auto-merged test.foo
CONFLICT (content): Merge conflict in test.foo

The file will be untouched and you can change it manually to be the correct version.
Either by leaving it untouched, or copying a new file over it. Then you need to commit
the merge conflict fix (even if you left the file untouched):

git commit -a -m "Fix merge conflict in test.foo"

17.3 Cherry Picking

The cherry picking of patches works differently to Darcs. There are a couple of ways of
handling this, but I use ‘git cherry-pick’. If you have a number of contributers with their
own repositories that you regularly pull from you can set up remote tracking branches:

git remote add john http://...
git remote add mary http://...

Now when you want John and Mary’s most recent patches you can fetch them:

94 CHAPTER 17. GIT REPOSITORY

git fetch john
git fetch mary

This does not make any changes to your local branches. It gets and stores their changes
in a separate remote tracking branch. If you want to see what John has changed, com-
pared to yours:

git log -p master..john/master

From there you can decide to pull in all John’s commits:

git merge john/master

If you want one commit, but not its dependencies then this is where ‘cherry-pick’ is
used.

Given a commit id, ‘cherry-pick’ will take the patch for that commit and apply it to
your current branch. It’s used like:

git cherry-pick abcdefgh

This creates a commit with a different commit id than the original, but with the same
contents. It needs to be a different id as it doesn’t have the same dependencies as the
original.

If you decide later you want all John’s commits and do a merge which includes the
commit that you cherry picked from you might expect conflicts. Git handles this case
fine and does an automatic merge, noticing the patches are the same. So it effectively
gives you the same functionality as Darcs selective patch pulling, but not as nice a user
interface.

Chapter 18

Ogg Vorbis and Theora

Describe Ogg library usage.

95

96 CHAPTER 18. OGG VORBIS AND THEORA

Chapter 19

Serialization

19.1 Serializing Objects

Serialisation supports most Factor types and is extensible by adding methods to generic
functions. You can even serialize quotations containing words, and so long as those
words exist in the target system, the deserialization will link them correctly and the
quotation is callable. Actual code doesn’t serialize at this stage though.

An example of usage:

"serialize" require
USE: serialize

[
["Hello World!" serialize] with-serialized

] string-out
=> ...serialized format as a string...

[
[deserialize] with-serialized

] string-in
=> "Hello World!"

The ‘string-out’ and ‘string-in’ shown above are standard words to direct all output to
go to and from strings respectively. You can also serialize to files and deserialize them
on any other Factor system.

97

98 CHAPTER 19. SERIALIZATION

19.2 Serializing Gadgets

I’ve managed to get the serialization code to the point where it serializes user inter-
face gadgets. To demonstrate it I serialized an in-progress game of Space Invaders,
uploaded the serialized file to my web server and someone else on IRC downloaded it,
deserialized it, and continued where the game left off.

Given the gadget on the stack, serialization to a file was as easy as:

[
"filename.ser" <file-writer> [

unparent serialize
] with-stream

] with-serialized

To get the instance running again:

[
"filename.ser" <file-writer> [

deserialize
] with-stream

] with-serialized "Space Invaders" open-titled-window

Index

<arrow>, 9
<channel>, 15
<model>, 9
<remote-channel>, 17
activate-model, 10
deactivate-model, 10
from, 15
match-cond, 22
match, 21
publish, 17
replace, 13
search, 13
start-node, 17
to, 15
web-app, 66

99

	I Works in latest Factor
	Cells
	Models
	Gadgets and Models
	Updating time example

	Search and Replace with PEGs
	Channels
	Distributed Channels
	Pattern Matching
	Embedded Domain Specific Languages in Factor
	Parsing JavaScript

	II Need to be updated
	Partial Continuations
	Distributed Concurrency
	Lazy
	Parsers
	Compilers and Interpreters
	Web Applications
	Continuation Based Web Apps
	Overview
	Getting Started
	Responders
	Hello World 1
	HTML Generation
	Hello World 2
	Dynamic Data
	Some simple flow
	Forms and POST data
	Associating URL's with words
	Local State
	Calling `Subroutines'
	Simple Testing

	Parsing Expression Grammars
	Parsing Arithmetic Expressions

	Factor to Javascript Compiler
	Git Repository
	How to publish a git repository
	Binary Files
	Cherry Picking

	Ogg Vorbis and Theora
	Serialization
	Serializing Objects
	Serializing Gadgets

