
Part II

Chapter 5
Parser Combinators

5.1 The type of parsers
5.2 Elementary parsers
5.3 Grammars
5.4 Parser combinators
5.5 Parser transformers
5.6 Matching parentheses
5.7 More parser combinators
5.8 Analyzing options

5.9 Arithmetical expressions
5.10 Generalized expressions
5.11 Monadic parsers
5.12 Context sensitivity
5.13 Common traps
5.14 Error handling
5.15 Self application

This chapter is an informal introduction to writing parsers in a lazy functional language
using parser combinators. The combinators are operators manipulating parse functions.
Using these combinators it is possible to write parsers for ambiguous grammars in an el-
egant way. These parser combinators relay on the possibility to manipulate with higher
order functions. Parsers are usually generated by special purpose parser generators, in
functional programming languages such a tools appears to be superfluous.

We will start by motivating the definition of the type of parser functions. Using that
type, we will be capable to build parsers for the language of ambiguous grammars. Next,
we will introduce some elementary parsers that can be used for parsing the terminal sym-
bols of a language. Your knowledge of grammars is shortly refreshed in section 3. In the
rest of this chapter we will show some examples and introduce more powerful parser
combinators interleaved.

The parsing problem is: given a string, construct a tree that describes the structure of the
string according to its grammar. In this chapter we will use the word string for any se-
quence (list) of input symbols. Do not confuse this with the type String in Clean.

Grammars and parsing are one of the success stories of computer science. The context
free syntax of languages can be described concise by the BNF-formalism (Backus-Naur
Form). Theoretical computer science has developed test to determine if a BNF-gram-
mar is ambiguous or vacuous. Transformations can be used to make equivalent grammars
that are easier to parse. Applied computer science developed parsers compilers that can

II.4 Parsers DRAFT 12 augustus 1997 199

turn a high-level specification of a parser into an efficient program. Theoretical computer
science can state some properties about grammar formalisms, grammars and parsing al-
gorithms. In this chapter we will introduce tools that enables you to construct recursive
descent parsers in an easy way. Recursive descent parsing is a top-down method of syntax
analysis which uses a family of functions to process the input. In general we associate one
function to each nonterminal in the grammar.

5.1 The type of parsers
In a functional language we can define a datatype Tree. A parser could be implemented
by function of the following type:

::Parser :== [Char] -> Tree

For parsing substructures, a parser could call other parsers (or itself) recursively. These
calls need not only communicate to their result, but also which part of the input string is
left unprocessed. The unprocessed input string has to be part of the result of the parser.
The two results can be grouped in a tuple. A better definition for the type Parser is thus:

::Parser :== [Char] -> ([Char],Tree)

The type Tree, however, is not yet defined. The type of tree that is returned depends on
the application. Therefore, it is better to make the parser type into a polymorphic type,
by parameterizing it with the type of the parse tree. Thus we abstract from the type of the
parse tree at hand, substituting the type variable r for the result type Tree:

::Parser r :== [Char] -> ([Char],r)

For example, a parser that returns a structure of type Oak now has type Parser Oak. For
parse trees that represent an expression we could define a type Expr, making it possible to
develop parsers returning an expression: Parser Expr. Another instance of a parser is a
parse function that recognizes a string of digits, and yields the number represented by it
as a parse tree. In this case the function is of type Parser Int.

Until now, we have been assuming that every string can be parsed in exactly one way. In
general, this need not be the case: it may be that a single string can be parsed in various
ways, or that there is no possible way of parsing a string. As another refinement of the
type definition, instead of returning one parse tree (and its associated rest string), we let
a parser return a list of trees. Each element of the result consists of a tree, paired with the
rest string that was left unprocessed while parsing it. The type definition of Parser there-
fore had better be:

::Parser r :== [Char] -> [([Char],r)]

If there is just one parsing, the result of the parse function will be a singleton list. If no
parsing is possible, the result will be an empty list. In the case of an ambiguous grammar,
alternative parsings make up the elements of the result.

This programming style is called the list of successes method [Wadler 85]. It can be used
in situations where in other languages you would use backtracking techniques. If only one
solution is required rather than all possible solutions, you can take the head of the list of
successes. Thanks to lazy evaluation, only those elements that are actually needed are
evaluated. Lazy evaluation enables the use of the list of successes method instead of ordi-
nary backtracking without loss of efficiency.

Parsers with the type described so far operate on lists of characters. There is however no
reason to be this restrictive. You may imagine a situation in which a preprocessor prepares
a list of tokens, which is subsequently parsed. A token represents a collection of coherent
input characters. We can represent a token as a list of characters, a String, or some tailor

200 Functional programming in Clean

made datatype. To cater for arbitrary input symbols, as a final refinement of the parser
type we again abstract from a type: that of the elements of the input string. Calling it s,
and the result type r, the type of parsers is defined by:

::Parser s r :== [s] -> [([s],r)]

or if you prefer meaningful identifiers over conciseness:
::Parser symbol result :== [symbol] -> [([symbol],result)]

We will use this type definition in the rest of this chapter.

5.2 Elementary parsers
We will start quite simply, defining a parse function that just recognizes the symbol 'a'.
The type of the input string symbols is Char in this case, and as a parse tree we also sim-
ply use a Char:

symbola :: Parser Char Char
symbola = p
 where p ['a':xs] = [(xs, 'a')]
 p _ = []

The list of successes method immediately pays off, because now we can return an empty
list if no parsing is possible (because the input is empty, or does not start with an 'a'). In
the same fashion, we can write parsers that recognize other symbols. As always, rather
than defining a lot of closely related functions, it is better to abstract from the symbol to
be recognized by making it an extra parameter of the function. Also, the function can op-
erate on strings other than characters, so that it can be used in other applications than char-
acter oriented ones. The only prerequisite is that the symbols to be parsed can be tested
for equality. In Clean, this is indicated by the Eq predicate in the type of the function:

symbol :: s -> Parser s s | Eq s
symbol s = p
 where p [x:xs] | s == x = [(xs, x)]
 p _ = []

The function symbol is a function that, given a symbol s, yields a parser for that symbol.
The parser in turn is a function, too.

We will now define some elementary parsers that can do the work traditionally taken
care of by lexical analyzers. For example, a useful parser is one that recognizes a fixed
string of symbols, such as ['begin'] or ['end']. We will call this function token.

token :: [s] -> Parser s [s] | Eq s
token k = p
 where p xs | k == take n xs = [(drop n xs, k)]
 = []
 n = length k

As in the case of the symbol function we have parameterized this function with the string
to be recognized. Of course, this function is not confined to strings of characters.
However, we do need an equality test on the input string type. This is reflected in the
type of token.

The function token is a generalization of the symbol function, in that it recognizes more
than one character. The combinator symbol can be written in terms of token as:

symbol s = token [s]

Another generalization of symbol is a function which may, depending on the input, return
different parse results. The function satisfy is an example of this. Where the symbol func-
tion tests for equality to a given symbol, in satisfy an arbitrary predicate t can be speci-
fied. Again, satisfy effectively is a family of parser functions.

II.4 Parsers DRAFT 12 augustus 1997 201

satisfy :: (s->Bool) -> Parser s s
satisfy f = p
 where p [x:xs] | f x = [(xs,x)]
 p _ = []

The final generalisation in this line is to add a function to determine the result of a suc-
cesful parsing:

satisfy2 :: (s->Bool) (s->t) -> Parser s t
satisfy2 f g = p
 where p [x:xs] | f x = [(xs,g x)]
 p _ = []

In grammar theory an empty string is often called epsilon, written as the greek character
ε. In this tradition, we will define a function epsilon that parses the empty string. It does
not consume any input, and thus always returns an empty list as parse tree and unmodified
input.

epsilon :: Parser s [r]
epsilon = p
 where p xs = [(xs,[])]

A variation is the function succeed, that neither consumes input, but does always return a
given, fixed value (or parse tree, if you could call the result of processing zero symbols a
parse tree)

succeed :: r -> Parser s r
succeed v = p
 where p xs = [(xs, v)]

Of course, epsilon can be defined using succeed:
epsilon` :: Parser s [r]
epsilon` = succeed []

Dual to the function succeed is the function fail, that fails to recognize any symbol on the
input string. It always returns an empty list of successes:

fail :: Parser s r
fail = p
 where p xs = []

We will need this trivial parser as a neutral element for foldr later. Note the difference
with epsilon, which does have one element in its list of successes (albeit an empty one).

5.3 Grammars
A grammar is a formalism to describe syntax. In a grammar we distinguish terminal
symbols and nonterminal symbols. The terminal symbols are the elementary building
blocks in the grammar. All composed elements are called nonterminal symbols. The
grammar describes which constructs are allowed for the nonterminals. The expression
1+2*3 is composed at the top-level of the terminals 1 and + and the nonterminal 2*3. This
nonterminal is composed of the terminals 2, * and 3.

In a grammar we usually write the terminals between quotes. Sequential composition of
elements is denoted by juxtaposition. A definition of a nonterminal consists of its name,
the symbol ::=, a body and ends in a full stop. Various alternatives inside a body are sep-
arated by the |-symbol. Optional pieces are placed between the square brackets [and].
Zero or more occurrences are indicated by an postfix asterisk. One or more occurrences
by a postfix +-symbol. An empty alternative is indicated by ε. Grouping is indicated by
{ and }.

As example we show a simple grammar for expressions:

Expr ::= Term { Operator Term }.

202 Functional programming in Clean

Term ::= Digit + ['.' Digit +]
 | '(' Expr ')'.

Operator ::= '+' | '-' | '*' | '/'.

The meta-grammar, the grammar of all grammars, is:

Grammar ::= Rule +.

Rule ::= NonTerm '::=' Exp '.'.

Exp ::= NonTerm | ''' Term '''
 | Exp + | '{' Exp '}' | '[' Exp ']'
 | Exp '|' Exp | Exp '+' | Exp '*' | 'ε' .

The terminals in the meta grammar are the symbols between quotes and NonTerm and
Term. Each of them is a non-empty sequence of characters.

5.4 Parser combinators
Using the elementary parsers from above, parsers can be constructed for terminal symbols
from a grammar. More interesting are parsers for nonterminal symbols. Of course, you
could write these by hand in an ad-hoc way, but it is more convenient to construct them
by partially parameterizing higher-order functions.

Important operations on parsers are sequential and alternative composition. We will de-
velop two functions for this, which for notational convenience are defined as operators:
<&> for sequential composition, and <|> for alternative composition. Priorities of these
operators are defined to minimize parentheses in practical situations: the operator <&> as-
sociates to the right and will have priority level 6, whereas the operator <|> has priority
level 4. Both operators have two parsers as parameter, and yield a parser as result. By
combining the result of the composition with other parsers, you may construct even more
involved parsers.

In the definitions below, the functions operate on parsers p1 and p2. The parser combina-
tors yield a new parser; a function that takes a list of symbols as input and yields the list
of possible parsings.

To start, we will write the operator <&> for sequential composition. First p1 must be ap-
plied to the input. After that, p2 is applied to the rest of the input string xs1. This rest in-
put is part of the result of p1. Because p1 yields a list of solutions, we use a list compre-
hension in which p2 is applied to all rest strings in the list:

(<&>) infixr 6 :: (Parser s a) (Parser s b) -> Parser s (a,b)
(<&>) p1 p2 = p

where p xs = [(xs2,(v1,v2))
 \\ (xs1,v1) <- p1 xs
 , (xs2,v2) <- p2 xs1
]

The result of the function is a list of all possible tuples (xs2,(v1,v2)) with rest string xs2,
where v1 is the parse tree computed by p1, and where rest string xs1 is used to let p2 com-
pute v2 and xs2.

Apart from sequential composition we need a parser combinator for representing choice.
For this, we have the parser combinator operator <|>:

(<|>) infixr 4 :: (Parser s a) (Parser s a) -> Parser s a
(<|>) p1 p2 = p

where p xs = p1 xs ++ p2 xs

Thanks to the list of successes method, both p1 and p2 yield lists of possible parsings. To
obtain all possible successes of choice between p1 and p2, we only need to concatenate
these two lists.

II.4 Parsers DRAFT 12 augustus 1997 203

The result of parser combinators is again a parser, which can be combined with other
parsers. The resulting parse trees are intricate tuples which reflect the way in which the
parsers were combined. Thus, the term parse tree is really appropriate. For example, the
parser p_abc defined as

p_abc = symbol 'a' <&> symbol 'b' <&> symbol 'c'

is of type Parser Char (Char,(Char,Char)).

Although the tuples clearly describe the structure of the parse tree, it is a problem that we
cannot combine parsers in an arbitrary way. For example, it is impossible to alterna-
tively compose the parser p above with symbol 'a', because the latter is of type Parser
Char Char, and only parsers of the same type can be composed alternatively. Even worse,
it is not possible to recursively combine a parser with itself, as this would result in in-
finitely nested tuple types. What we need is a way to alter the structure of the parse tree
that a given parser returns.

5.5 Parser transformers
Apart from the operators <&> and <|>, that combine parsers, we can define some functions
that modify or transform existing parsers. We will develop three of them: sp lets a given
parser neglect initial spaces, just transforms a parser into one that insists on empty rest
string, and <@ applies a given function to the resulting parse trees.

The first parser transformer is sp. It drops spaces from the input, and then applies a given
parser:

sp :: (Parser Char a) -> Parser Char a
sp p = p o dropWhile isSpace

The second parser transformer is just. Given a parser p it yields a parser that does the
same as p, but also guarantees that the rest string is empty. It does so by filtering the list
of successes for empty rest strings. Because the rest string is the first component of the tu-
ple, the function can be defined as:

just :: (Parser s a) -> Parser s a
just p = filter (isEmpty o fst) o p

The most important parser transformer is the one that transforms a parser into a parser
which modifies its result value. We will define it as an operator <@, that applies a given
function to the result parse trees of a given parser. We have chosen the symbol so that you
might pronounce it as apply; the arrow points away from the function towards the argu-
ment. Given a parser p and a function f, the operator <@ returns a parser that does the same
as p, but in addition applies f to the resulting parse tree. It is most easily defined using a
list comprehension:

(<@) infixl 5 :: (Parser s a) (a->b) -> Parser s b
(<@) p0 f = p
 where p xs = [(ys, f v) \\ (ys, v) <- p0 xs]

Using this operator, we can transform the parser that recognizes a digit character into one
that delivers the result as an integer

digit :: Parser Char Int
digit = satisfy isDigit <@ digtoInt

In practice, the <@ operator is used to build a certain value during parsing (in the case of
parsing a computer program this value may be the generated code, or a list of all vari-
ables with their types, etc.). Put more generally: using <@ we can add semantic functions
to parsers.

204 Functional programming in Clean

While testing your self-made parsers, you can use just for discarding the parses which
leave a non-empty rest string. But you might become bored of seeing the empty list as
rest string in the results. Also, more often than not you may be interested in just some
parsing rather than all possibilities.

As we have reserved the word parser for a function that returns all parsings, accompanied
with their rest string. Let's therefore define a new type for a function that parses a text,
guarantees empty rest string, picks the first solution, and delivers the parse tree only
(discarding the rest string, because it is known to be empty at this stage). The functional
program for converting a parser in such a deterministic parser is more concise and read-
able than the description above:

:: DetPars symbol result :== [symbol] -> result

some :: (Parser s a) -> DetPars s a
some p = snd o hd o just p

Use the function some with care: this function assumes that there is at least one solution, so
it fails when the resulting DetPars is applied to a text which contains a syntax error.

5.6 Matching parentheses
Using the parser combinators and transformers developed thus far, we can construct a
parser that recognizes matching pairs of parentheses. A first attempt, that is not type cor-
rect however, is:

parens :: Parser Char ???
parens = (symbol '('
 <&> parens
 <&> symbol ')'
 <&> parens
)
 <|> epsilon

This definition is inspired strongly by the well-known grammar for nested parentheses.

Parentheses ::= '(' Parentheses ')' Parentheses
 | ε.

The type of the parse tree, however, is a problem. If this type would be a, then the type of
the composition of the four subtrees in the first alternative would be (Char,(a,(Char,a))),
which is not the same or unifiable. Also, the second alternative (epsilon) must yield a
parse tree of the same type. Therefore we need to define a type for the parse tree first,
and use the operator <@ in both alternatives to construct a tree of the correct type. The
type of the parse tree can be for example:

:: Tree = Nil
| Bin (Tree,Tree)

Now we can add semantic functions to the parser:
parens :: Parser Char Tree
parens = (symbol '('
 <&> parens
 <&> symbol ')'
 <&> parens
) <@ (\(_,(x,(_,y))) -> Bin (x,y))
 <|> epsilon <@ K Nil

Using the combinator K from the standard environment:
K :: x y -> x
K x y = x

II.4 Parsers DRAFT 12 augustus 1997 205

The rather obscure text (_,(x,(_,y))) is a lambda pattern describing a function with as
parameter a tuple containing the four parts of the first alternative, of which only the sec-
ond and fourth matter.

In the lambda pattern, underscores are used as placeholders for the parse trees of symbol
'(' and symbol ')', which are not needed in the result. In order to not having to use these
complicated tuples, it might be easier to discard the parse trees for symbols in an earlier
stage. For this, we introduce two auxiliary parser combinators, which will prove useful in
many situations. These operators behave the same as <&>, except that they discard the re-
sult of one of their two parser arguments:

(<&) infixr 6 :: (Parser s a) (Parser s b) -> Parser s a
(<&) p q = p <&> q <@ fst

(&>) infixr 6 :: (Parser s a) (Parser s b) -> Parser s b
(&>) p q = p <&> q <@ snd

We can use these new parser combinators for improving the readability of the parser
parens:

open = symbol '('
close = symbol ')'

parens :: Parser Char Tree
parens = (open &> parens <& close) <&> parens <@ Bin
 <|> succeed Nil

By judiciously choosing the priorities of the operators involved we minimized on the
number of parentheses needed. This application shows why we have packed the subtrees of
Bin in a tuple.

By varying the function used after <@ (the semantic function), we can yield other things
than parse trees. As an example we write a parser that calculates the maximum nesting
depth of nested parentheses:

nesting :: Parser Char Int
nesting = (open &> nesting <& close) <&> nesting
 <@ (\(x,y) -> max (x+1) y)
 <|> succeed 0

An example of the use of nesting is:
Start = just nesting ['()(()(()()))()']

which results in
[([],3)]

Indeed nesting only recognizes correctly formed nested parentheses, and calculates the
nesting depth on the fly. Without just, this program yields also a number of partial parse
results:

[([],3),(['()'],3),(['(()(()()))()'],1),(['()(()(()()))()'],0)]

If more variations are of interest, it may be worthwhile to make the semantic function
and the value to yield in the empty case into two additional parameters. The higher or-
der function foldparens parses nested parentheses, using the given function f and constant e
respectively, after parsing one of the two alternatives:

foldparens :: ((a,a)->a) a -> Parser Char a
foldparens f e = p
 where p = (open &> p <& close) <&> p <@ f
 <|> succeed e

In exercise 7 you are asked to use this function to write some of the parser introduced
above.

206 Functional programming in Clean

5.7 More parser combinators
Although in principle you can build parsers for any context-free language using the com-
binators <&> and <|>, in practice it is easier to have some more parser combinators avail-
able. In traditional grammar formalisms, too, additional symbols are used to describe
for example optional or repeated constructions. Consider for example the BNF formal-
ism, in which originally only sequential and alternative composition could be used
(denoted by juxtaposition and vertical bars, respectively), but which was later extended
to also allow for repetition, denoted by asterisks.

It is very easy to make new parser combinators for extensions like that. As a first exam-
ple we consider repetition. Given a parser p for a construction, <*> p is a parser for zero or
more occurrences of that construction. The name of this function is inspired by the habit
in BNF-notation to write a (postfix) asterisk to indicate zero or more occurrences.

<*> :: (Parser s a) -> Parser s [a];
<*> p = p <&> <*> p <@ list
 <|> succeed []

The auxiliary function list is defined as the uncurried version of the list constructor:
list :: (x,[x]) -> [x]
list (x,xs) = [x:xs]

The recursive definition of the parser follows the recursive structure of lists. Perhaps even
nicer is the version in which the epsilon parser is used instead of succeed:

<*> :: (Parser s a) -> Parser s [a];
<*> p = p <&> <*> p <@ (\(x,xs) -> [x:xs])
 <|> epsilon <@ (_ -> [])

The order in which the alternatives are given only influences the order in which solutions
are placed in the list of successes.

But to obtain symmetry, we could also try and avoid the <@ operator in both alternatives.
Earlier we defined the operator <& as an abbreviation of applying <@ fst to the result of
<&>. In the function <*>, also the result of <&> is postprocessed. We define <:&> as an ab-
breviation of postprocessing <&> with the list function:

(<:&>) :: (Parser s a) (Parser s [a]) -> Parser s [a]
(<:&>) p q = p <&> q <@ list

Then we can define
<*> :: (Parser s a) -> Parser s [a];
<*> p = p <:&> <*> p
 <|> succeed []

An example in which the combinator <*> can be used is parsing of a natural number:
natural :: Parser Char Int
natural = <*> digit <@ foldl nextDigit 0
 where nextDigit a b = a*10+b

Defined in this way, the natural parser also accepts empty input as a number. If this is not
desired, we'd better use the <+> parser combinator, which accepts one or more occurrences
of a construction. This function is again inspired by the BNF-notation.

<+> :: (Parser s a) -> Parser s [a]
<+> p = p <:&> <*> p

Another combinator that you may know from other formalisms is the option combinator
<?>. The constructed parser generates an optional element, depending on whether the
construction was recognized or not. The parser yields a list of successes.

<?> :: (Parser s a) -> Parser s [a]
<?> p = p <@ (\x -> [x])
 <|> epsilon <@ (_ -> [])

II.4 Parsers DRAFT 12 augustus 1997 207

For aesthetic reasons we used epsilon in this definition; another way to write the second
alternative is succeed [].

Using the parser natural we can define a parser for a (possibly negative) integer number,
which consists of an optional minus sign followed by a natural number. The easiest way is
to do case analysis:

integer :: Parser Char Int
integer = <?> (symbol '-') <&> natural <@ f
 where f ([],n) = n
 f (_,n) = ~n

A nicer way to write this parser is by using the <?@ operator, yielding the identity or
negation function in absence or presence of the minus sign, which is finally applied to the
natural number. The operator <?@ is defined in section 5.8.

integer :: Parser Char Int
integer = (<?> (symbol '-') <?@ (I,K ~))
 <&> natural
 <@ \(f,n) -> f n

By the use of the <?> and <*> functions, a large amount of backtracking possibilities are
introduced. This is not always advantageous. For example, if we define a parser for iden-
tifiers by

identifier :: Parser Char String
identifier = <+> (satisfy isAlpha) <@ toString

a single word may also be parsed in several ways as identifier. As a matter of fact
idenitifier ['Clean'] yields

[([],"Clean"),(['n'],"Clea"),(['an'],"Cle"),(['ean'],"Cl"),(['lean'],"C")]

The order of the alternatives in the definition of <+> and <*> caused the greedy parsing,
which accumulates as many letters as possible in the identifier is tried first, but if parsing
fails elsewhere in the sentence, also less greedy parsings of the identifier are tried – in
vain.

In some situations we can predict that it is useless to try non-greedy successes of <*> or
<+> from the structure of the grammar. Examples are the parsers natural and fractpart.
We can define a parser transformer first, that transforms a parser into a parser that only
yields the first possibility. It does so by taking the first element of the list of successes.

first :: (Parser s a) -> Parser s a
first p = take 1 o p

Using this function, we can create special take all or nothing versions of <*> and <+>:
<!*> :: ((Parser s a) -> Parser s [a])
<!*> = first o <*>

<!+> :: ((Parser s a) -> Parser s [a])
<!+> = first o <+>

when we define
identifier :: Parser Char String
identifier = <!+> (satisfy isAlpha) <@ toString

The expression idenitifier ['Clean'] now yields
[([],"Clean")]

In the parsing of numbers we have a similar situation. Usually it does not make sense to
stop parsing of a number within a sequence on digits. We want at least on digit for the
number and consume all subsequent digits:

natural :: Parser Char Int
natural = <!+> digit <@ foldl nextDigit 0
 where nextDigit a b = a*10+b

208 Functional programming in Clean

If we compose the first function with the option parser combinator:
<!?> :: ((Parser s a) -> Parser s [a])
<!?> = first o <?>

we get a parser which must accept a construction if it is present, but which does not fail if
it is not present.

The combinators <*>, <+> and <?> are classical in parser constructions, but there is no need
to leave it at that. For example, in many languages constructions are frequently enclosed
between two meaningless symbols, most often some sort of parentheses. For this we de-
sign a parser combinator pack. Given a parser for an opening token (s1), a body (p), and a
closing token (s2), it constructs a parser for the enclosed body:

pack :: (Parser s a) (Parser s b) (Parser s c) -> Parser s b
pack s1 p s2 = s1 &> p <& s2

Applications of this combinator are:
parenthesized p = pack (symbol '(') p (symbol ')')
bracketed p = pack (symbol '[') p (symbol ']')
compound p = pack (token ['begin']) p (token ['end'])

Another frequently occurring construction is repetition of a certain construction, where the
elements are separated by some symbol. You may think of lists of parameters
(expressions separated by commas), or compound statements (statements separated by
semicolons). For the parse trees, the separators are of no importance. The function listOf
below generates a parser for a (possibly empty) list, given a parser for the items and a
parser for the separators:

listOf :: (Parser s a) (Parser s b) -> Parser s [a]
listOf p s = p <:&> <*> (s &> p)
 <|> succeed []

An useful application is:
commaList :: (Parser Char a) -> Parser Char [a]
commaList p = listOf p (symbol ',')

A somewhat more complicated variant of the function listOf is the case where the separa-
tors carry a meaning themselves. For example, arithmetical expressions, where the opera-
tors that separate the subexpressions have to be part of the parse tree. For this case we will
develop the functions chainr and chainl. These functions expect that the parser for the
separators yields a function (!); that function is used by chain to combine parse trees for
the items. In the case of chainr the operator is applied right-to-left, in the case of chainl
it is applied left-to-right. The basic structure of chainl is the same as that of listOf. But
where the function listOf discards the separators using the operator &>, we will keep it in
the result now using <&>. Furthermore, postprocessing is more difficult now than just ap-
plying list.

chainl :: (Parser s a) (Parser s (a a->a)) -> Parser s a
chainl p s = p <&> <*> (s <&> p) <@ f

The function f should operate on an element (yielded by the first p) and a list of tuples
(yielded by <*> (s <&> p)), each containing an operator and an element. For example,
f (e0,[(o1,e1),(o2,e2),(o3,e3)] should return ((e0 o1 e1) o2 e2) o3 e3. Since we cannot
use infix notation here we actually have to write: o3 (o2 (o1 e0 e1) e2) e3. You may rec-
ognize a version of foldl in this (albeit an uncurried one), where a tuple (o1,e1) from the
list and intermediate result e are combined applying o1 e e1. We define

chainl :: (Parser s a) (Parser s (a a->a)) -> Parser s a
chainl p s = p <&> <*> (s <&> p) <@ \(e0,l) -> foldl (\x (op,y) -> op x y) e0 l

II.4 Parsers DRAFT 12 augustus 1997 209

Dual to this function is chainr, which applies the operators associating to the right. To
obtain chainr, change foldl into foldr, flip the list and initial element and reorder the
distribution of <*> over the <&> operators:

chainr :: (Parser s a) (Parser s (a a->a)) -> Parser s a
chainr p s = <*> (p <&> s) <&> p <@ \(l,e0) -> foldr (\(x,op) y -> op x y) e0 l

The function chainl is convenient to parse expressions. Expressions composed of integers
and the addition or subtraction of integers can be parsed and evaluated by:

expr :: Parser Char Int
expr = chainl integer (symbol '+' <@ K (+) <|> symbol '-' <@ K (-))

An application of this function is:
Start = just expr ['54--32-1']

This program yields
[([],85)]

Note that using chainr instead of chainl in expr changes the associativity of operators.
The result of our example program would have been [([],87)].

This example shows also that we does not have to construct a parse tree which is a direct
representation of the items parsed. The parsed expressions of this example are evaluated
immediately.

5.8 Analyzing options
The option function <?> constructs a parser which yields an optional element. Post-
processing ofter perferm a case analysis whether the element was found or not. You will
therefore often need constructions like:

 <?> p <@ f
 where f [] = a
 f [x] = b x

As this necessitates a new function name for every optional symbol in our grammar, we
had better provide a higher order function for this situation. We will define a special ver-
sion <?@ of the <@ operator, which provides a semantics for both the case that the optional
construct was present and that it was not. The right argument of <?@ consists of two parts:
a constant to be used in absence, and a function to be used in presence of the optional con-
struct. The new transformer is defined by:

(<?@) infixl 5 :: (Parser s [a]) (b,a->b) -> Parser s b
(<?@) p (no,yes) = p <@ f
 where f [x] = yes x
 f [] = no

To illustrate a practical use of this, let's extend the parser for natural numbers to floating
point numbers. We have for natural numbers:

natural :: Parser Char Int
natural = <+> digit <@ foldl nextDigit 0
 where nextDigit a b = a*10+b

The fractional part of a floating point number is parsed by:
fractpart :: Parser Char Real
fractpart = <*> digit <@ foldr nextDigit 0.0
 where nextDigit d n = (n + toReal d)/10.0

But the fractional part is optional in a floating point number.
real :: Parser Char Real
real = (integer <@ toReal)
 <&> (<?> (symbol '.' &> fractpart) <?@ (0.0,I))
 <@ uncurry (+)

210 Functional programming in Clean

The decimal point is for separation only, and therefore immediately discarded by the
operator &>. The decimal point and the fractional part together are optional. In their ab-
sence, the number 0.0 should be used, in there presence, the identity function should be
applied to the fractional part. Finally, integer and fractional part are added.

We can use this approach for yet another refinement of the chainr function. It was defined
in the previous section using the function <*>. The parser yields a list of tuples (element,
operator), which immediately afterwards is destroyed by foldr. Why bothering building
the list, then, anyway? We can apply the function that is folded with directly during pars-
ing, without first building a list. For this, we need to substitute the body of <*> in the
definition of chainr. We can further abbreviate the phrase p <|> epsilon by <?> p. By di-
rectly applying the function that was previously used during foldr we obtain:

chainr` :: (Parser s a) (Parser s (a a->a)) -> Parser s a
chainr` p s = q
 where q = p <&> (<?> (s <&> q) <?@ (I,\(op,y) x -> op x y)) <@ \(x,op) -> op x

5.9 Arithmetical expressions
In this section we will use the parser combinators in a concrete application. We will de-
velop a parser for arithmetical expressions, of which parse trees are of type Expr.
Operators will be stored as functions with the corresponding names.

::Expr = Int Int
 | Var String
 | Fun String [Expr]

In order to account for the priorities of the operators, we will use a grammar with non-
terminals expression, term and factor: an expression is composed of terms separated by +
or -; a term is composed of factors separated by * or /, and a factor is a constant, a vari-
able, a function call, or an expression between parentheses.

expr ::= term { { '+' | '-' } term }* .

term ::= fact { { '*' | '/' } fact }* .

fact ::= integer
 | identifier ['(' exp { ',' expr } * ')']
 | '(' expr ')' .

This grammar is represented in the functions below:
fact :: Parser Char Expr
fact = integer <@ Int
 <|> identifier
 <&> (<!?> (parenthesized (commaList expr))
 <?@ (Var,flip Fun))
 <@ (\(x,op) -> op x)
 <|> parenthesized expr

The first alternative is a constant, which is fed into the semantic function Con. The second
alternative is a variable or function call, depending on the presence of a parameter list. In
absence of the latter, the function Var is applied, in presence the function Fun. The function
flip is used to place the function name between the constructor Fun and the arguments.

flip :: (a b -> c) b a -> c
flip f b a = f a b

For the third alternative of fact there is no semantic function; the meaning of an expres-
sion between parentheses is the same as that of the expression without parentheses. If you
insists of adding such a function you can use <@ I.

For the definition of a term as a list of factors separated by multiplicative operators we
will use the function chainl:

II.4 Parsers DRAFT 12 augustus 1997 211

term :: Parser Char Expr
term = chainl fact ((symbol '*' <|> symbol '/') <@ mkFun)

mkFun :: a Expr Expr -> Expr | toString a
mkFun n x y = Fun (toString n) [x,y]

Recall that chainl repeatedly recognizes its first parameter (fact), separated by its sec-
ond parameter (an * or /). The parse trees for the individual factors are joined by the
function mkFun supplied after <@.

The function expr is analogous to term, only with additive operators instead of multi-
plicative operators, and with terms instead of factors:

expr :: Parser Char Expr
expr = chainl term ((symbol '+' <|> symbol '-') <@ mkFun)

From this example the strength of the method becomes clear. There is no need for a sepa-
rate formalism for grammars; the production rules of the grammar are joined using
higher-order functions. Also, there is no need for a separate parser generator (like yacc);
the functions can be viewed both as description of the grammar and as an executable
parser.

5.10 Generalized expressions
Arithmetical expressions in which operators have more than two levels of priority can be
parsed by writing more auxiliary functions between term and expr. The function chainl is
used in each definition, with as first parameter the function of one priority level higher.

If there are nine levels of priority, we obtain nine copies of almost the same text. This
would not be as it should be. Functions that resemble each other are an indication that we
should write a generalized function, where the differences are described using extra pa-
rameters. Therefore, let's inspect the differences in the definitions of term and expr again.
These are:

 • The operators that are used in the second parameter of chainl
 • The parser that is used as first parameter of chainl

The generalized function will take these two differences as extra parameters: the first in
the form of a list of operator names, the second in the form of a parse function. In general
the is no reason to assume that operators are exactly one symbol long. So, we use token in-
stead of symbol. Finally, we replace mkFun by a parameter.

gen :: ([s] e e -> e) [[s]] (Parser s e) -> Parser s e | == s
gen f ops p = chainl p (choice [token t <@ f \\ t <- ops])

The function choice is the generalisation of <|> to a list of parsing alternatives developed
in exercise 12.

If furthermore we define as shorthand:
add_op = [['+'],['-']]
mul_op = [['*'],['/']]

then expr and term can be defined as applications of gen:
expr = gen mkFun add_op term
term = gen mkFun mul_op fact

By expanding the definition of term in that of expr we obtain:
expr = gen mkFun add_op (gen mkFun mul_op fact)

Which an experienced functional programmer immediately recognizes as an application
of foldr. The function to apply to the list elements is gen mkFun, the unit element for an
empty list is fact and the list of items to process is [add_op, mul_op].

212 Functional programming in Clean

expr :: Parser Char Expr
expr = foldr (gen mkFun) fact [add_op, mul_op]

From this definition a generalization to more levels of priority is simply a matter of ex-
tending the list of operator-lists.

The very compact formulation of the parser for expressions with an arbitrary number of
priority levels was possible because the parser combinators could be used in conjunction
with the existing mechanisms for generalization and partial parametrization in the func-
tional language.

Contrary to conventional approaches, the levels of priority need not be coded explicitly
with integers. The only thing that matters is the relative position of an operator in the list
of lists with operators. All operators in a sub-list have the same priority. The insertion of
additional levels of priority is very easy.

5.11 Monadic parsers
The result of the sequential composition of two parsers by the operator <&> is grouped in
a tuple. Often this tuple is immediately destructed in order to construct the intended
parse tree. Especially when a long sequence of items is parsed, handling these tuples can
become ugly.

By using the idea of monads we can avoid the construction and destruction of tuples. The
operator <&=> is the equivalent of the operator `bind` used to compose two monad ma-
nipulations. The name and use of <&=> are similar to the operator <&>. The left argument
of the operator <&=> is an ordinary parser. The right argument is a function that takes the
parse tree of the first parser as argument and yields a parser. These two arguments are
composed to a new parser:

(<&=>) infixr 6 :: (Parser s a) (a -> Parser s b) -> Parser s b
(<&=>) p1 p2 = p
 where p xs = [tuples
 \\ (xs1,v1) <- p1 xs
 , tuples <- p2 v1 xs1
]

When you compare this with the definition of <&> it is obvious that also the definitions of
<&=> and <&> are very similar.

The parser succeed can be used where you expect the monad construct return. For in-
stance, a parser that will recognise two integers separated by the symbol + and yields
their sum as parse tree is defined in the monadic style as1:

ints :: Parser Char Int
ints = integer <&=> (\i ->
 symbol '+' <&=> (_ ->
 integer <&=> (\j ->
 succeed (i+j))))

There is no need to treat the operator <&=> as an opposite of <&>. These operators, as well
as all other parser combinators, can be combined to write new parsers. This is illustrated
by the following examples.

The first example is the definition of the parser nesting from section 5.6. This parser
computes the maximum depth of nesting pairs of parantheses. Using the new parser com-
binator it can be defined as:

1In Clean 1.2 the parentheses around the lambda expressions can be omitted.

II.4 Parsers DRAFT 12 augustus 1997 213

nesting :: Parser Char Int
nesting = (open &> nesting <& close) <&=> (\x ->
 nesting <&=> (\y ->
 succeed (max (x+1) y)))
 <|> succeed 0

In fact, we can often do without the 'result' operator succeed. We can replace the last oper-
ator <&=> by <@. Using this the parser nesting can be defined as:

nesting :: Parser Char Int
nesting = (open &> nesting <& close) <&=> (\x ->
 nesting <@ (\y ->
 max (x+1) y))
 <|> succeed 0

The second example is the parser fact introduced in the section about parsing expressions
above.

fact :: Parser Char Expr
fact = integer <@ Con
 <|> identifier <&=> (\v ->
 <!?> (parenthesized (commaList expr))
 <?@ (Var v,\args -> Fun v args))
 <|> parenthesized expr

These example show that the monadic style can be combined with the other parser
combinators. The obtained parsers contain less combinators due to improved handling of
the parse results. Since the monadic parsers are a little more compact and contain no
tuple handling they are more appealing.

5.12 Context sensitivity
Until now all decisions in parsing are taken on the syntactical structure of the input. In
general this is not always possible. For instance, when we are parsing a functional language
like Clean an identifier can be the name of a function are a function argument. We cannot
make a decision based on the syntax alone. Whether an identifier is a argument or a func-
tion depends on the context of the identifier.

A similar problem arises in the parsing of functions that consists of several alternatives. It
is easy to construct a parser for alternatives.

:: Definition = FunDef [Alt]
:: Alt = Alt Fsymb [Pattern] Expr
:: Fsymb :== String

pAlt :: Parser Char Alt
pAlt = identifier <&=> (\f ->
 <!*> pattern <&=> (\args ->
 spsymbol '=' &>
 sp expr <&
 spsymbol ';' <@ (\b -> Alt f args b))))

pattern :: Parser Char Expr
pattern = sp (identifier <@ Var <!> integer <@ Int)

Combining these alternatives to functions is a bit tricky. When we would simply write
pFun :: Parser Char Definition
pFun = <+> pAlt

all alternatives are combined into one function. This is clearly not the intention.
Delaying the generation of functions to the processing of the list of alternatives is not al-
ways desirable. What we really want is to parse one alternative and then collect all other
alternatives that start with the same name.

We cannot achieve this by a condition on the list of parsed alternatives. The alternatives
are parsed at that moment and there is no way to undo the parsing. We should only in-

214 Functional programming in Clean

clude the alternative in the list when it belongs to this function. To realise this we can
add an additional argument to the parser of alternatives that checks the appropriate con-
dition on the functions symbol.

pFun2 :: Parser Char Definition
pFun2 = pAlt2 (_->True) <&=> (\a=:(Alt f _ _) ->

<!*> (pAlt2 (\g->f==g))
<@ (\r -> FunDef [a:r]))

pAlt2 :: (String -> Bool) -> (Parser Char Alt)
pAlt2 p = Fsymb <&=> (\f ->

 if (p f) (<!*> pattern <&=> (\args ->
 spsymbol '=' &>
 sp expr <&
 spsymbol ';' <@ (\b ->
 Alt f args b))

)
 fail)

However, it is more elegant to do impose this kind of conditions with a new parser com-
binator. The combinator <??> is defined as:

(<??>) infix 9 :: (Parser s a) (a->Bool) -> Parser s a
(<??>) p f = \xs -> [t

\\ t=:(_,v) <- p xs
| f v
]

This parser imposes an condition on the parsed items and only succeeds when the condi-
tion yields True. Using this combinator, the parsing of functions can be defined as:

pFun = pAlt <&=> (\a=:(Alt f _ _) ->
<!*> (pAlt <??> (\(Alt g _ _) -> f==g))
<@ (\r -> FunDef [a:r]))

Although this definition is very elegant, it is slightly less efficient than the parser pFun2.
Parser pFun parses the entire alternative before the test is executed, while pFun2 evaluates
the test as soon as the function symbol is parsed. The parser pAlt2 can be written more el-
egant using the conditional combinator <??>.

5.13 Common traps
The parsers themselves can be read equally well as grammar rules. At some places the
specified parsers look more complicated then the grammar, this is not caused by the
parsing part, but by the manipulation of recognised items. Manipulation of the recog-
nised items is usually done in attribute grammars [??] or affix grammars [??]. Here we
have the advantage that parsing and manipulation of the recognised items are done in the
same high level language. Whenever necessary we can employ the full power of this lan-
guage.

This looks all very well and simple, but we cannot use this without some understanding
of what is actually happening. Here it is much easier to understand what is happening than
in some parser generator, since the implementation of all constructs used is available.

Left recursion

Problems arise for instance with left-recursive rules in a syntax description. A rule in a
grammar is left-recursive when its name occurs immediately after the ::=-symbol. Also
when its name occurs in an other rule of the grammar that can be called without consum-
ing any input the same problem occurs. An example of a direct left recursive grammar is:

exp ::= exp oper exp | '(' exp ')' | integer .

oper ::= '+' | '-' .

II.4 Parsers DRAFT 12 augustus 1997 215

When we would write naively a parser for this syntax this will look like:
expres :: Parser Char Int
expres = expres <&=> (\x ->
 oper <&=> (\op ->
 expres <@ (\y ->
 op x y)))
 <|> parenthesized expres
 <|> integer

oper :: Parser Char (a a -> a) | +,- a
oper = symbol '+' <@ K (+) <|> symbol '-' <@ K (-)

Although that it looks obvious correct, it will always generates an overflow (either stack
overflow or heap full). This is caused by the fact that expres is a recursive function that
will enter the recursion immediately. The function does not consume any input nor per-
forms any test before entering the recursion: this cannot terminate. In part I we saw that
recursive functions are accomplished as long as we guarantee that they will yield a result
in some finite number of iterations. In this situation it is fine to write parsers as recursive
function as long as we guarantee that these parsers consume some input symbols. Since the
input is assumed to be finite the parser will terminate. Fortunately it can be show that it
is always possible to transform a left-recursive grammar to a grammar that can be parsed
safely.

In our example we can solve the termination problems by writing

exp ::= integer oper exp | '(' exp ')' | integer .

The corresponding parser is
expres2 :: Parser Char Int
expres2 = integer <&=> (\x ->
 oper <&=> (\op ->
 expres2 <@ (\y ->
 op x y)))
 <|> parenthesized expres2
 <|> integer

This parser has an other problem. It associates operators to the right, while in
mathematics this is usually done to the left. For instance the input ['1-2-3'] is evaluted
to 2 insted of -4. A correct way to construct such a parsers for expressions is.

expres3 :: Parser Char Int
expres3 = elem <&=> (\x ->
 <*> (oper <&> elem) <@ (\list ->
 foldl (\a (op,b) -> op a b) x list))

elem :: Parser Char Int
elem = integer <|> parenthesized expres3

An other solution is to use the function chainl defined above.

Parsing the same structure again

Apart from the associativity problem, the parser expres2 has an other problem. When you
supply an input containing only an integer, e.g. ['42'], this integer is parsed twice. The
function expres2 first tries to find a compound expression. Parsing a compound expres-
sion consists of parsing an integer, parsing an operand and parsing an other expression.

Applied to our example parsing an integer secedes, but parsing an operator fails. Now
the next element in the list of successes is evaluated.2 The second possibility is a paren-
thesized expres2. This fails immediately since the first symbol in the input is not a '('.

2When we have not defined integer using <!+>, the parser will take '4' as an integer and tries to parse
['2'] as an operator and an expression as second element in the list of successes.

216 Functional programming in Clean

Now the integer will be parsed for the second time and the parser will successfully ter-
minate. Parsing an integer twice is not much of a problem, but when you use a compli-
cated structure instead of integer this can slow down the compiler considerably.
Especially when the surrounding parser is applied in a similar situation.

This problem can always be avoided by writing the parser slightly different. The essen-
tial step is to take care that the initial part is parsed only once. All possible continuations
are grouped to one parsed that is applied after recognition of the first element.

expres4 :: Parser Char Int
expres4 = integer <&=> (\x ->
 succeed x
 <|> oper <&=> (\op ->
 expres4 <@ (\y ->
 op x y)))
 <|> parenthesized expres4

The parser expres3 shows an other way to avoid this problem. The same technique is used
to parse an identifier only once in fact.

5.14 Error handling
The parsers constructed in the way outlined in the previous sections works fine when the
input can be parsed according to the grammar. On an erroneous input however, the con-
structed parsers show undesirable behaviour. At the spot of the error the parser just gener-
ates a failing parse of the sub-structure at hand. The parser starts trying all possible alter-
natives and can generate lots of partial parses. In this section we introduce some exten-
sions that enable the detection of errors. When an error is found, it can be handled in sev-
eral ways. We show how to interrupt parsing at an error, error detection, and also how the
continue parsing after the detection of an error, error recovery.

In general you should equip your compilers with some error detection. Whether you will
also include error recovery or not, depends on your needs and the effort you want to put in
writing the parser. In general it is hard to write a parser that is good in error recovery:
people, including yourself, appear to be more creative in making syntax errors than you
can imagine while you are writing the error recovery part of the parser.

Detecting errors

To enable the detection of errors we introduce the or-else operator <!>. The ordinary or
operator, <|>, yields all solutions of the first parser and all solutions of the second parser.
The or-else operator <!> only activates the second parser when the first one fails.

(<!>) infixr 4 :: (Parser s r) (Parser s r) -> Parser s r
(<!>) p q = p` // apply q when p fa i l s

where p` xs = case p xs of
 [] -> q xs
 r -> r

To limit the amount of parentheses to write, we can give this parser combinator a higher
priority than the operators <&> and <|>. This might be convenient for detecting errors, but
is too confusing when you use the or-else operator as alternative for the operator <|>.

The operator <!> is used in situations where the syntax of the language to parse guarantees
that some construct must be present. This implies that there is an error when the corre-
sponding parser p fails. It is also possible to use <!> in ordinary parsers. The result of the
expressions p1 <!> p2 <!> p3 is the result of p1 when it is not empty. When p1 fails the re-
sult of this expression is the result of p2 unless that is also empty. When p1 and p2 fails the
result of this expression is the result of p3. Do not confuse this with first (p1 <|> p2 <|>

II.4 Parsers DRAFT 12 augustus 1997 217

p3). The last expression yields the first result of the concatenation of the results of p1, p2
and p3. The first expression yields the result of the first parser that does not fail, this
does not need to be a single result.

Now we will give some suggestions of what can be done when an error is detected.

Interrupting the parser

The simplest thing to do is to interrupt the parser immediately when an error is de-
tected. This simple error handling is in many situation superior to the standard way of
handling errors in the parser described until now. Without special measurements the
parser starts to try all alternatives and returns usually one or more partial parses when an
error in the input occurs.

Consider the following grammar for an simple imperative language:

tiny ::= 'BEGIN' statements 'END'.

statements ::= stmt [';' statements].

stmt ::= identifier ':=' expression
 | 'IF' expression 'THEN' stmts ['ELSE' stmts]
 | 'WHILE' expression 'DO' stmts
 | 'PRINT' expression
 | 'VAR' identifier [integer].

stmts ::= stmt | 'BEGIN' statements 'END' .

The following data-structure is used to store parse trees of this language, the type Expr in-
troduced above is used for expressions in Tiny:

:: Tiny :== [TStatement]

:: TStatement = Declare Variable Int
| Assign Variable Expr
| If Expr [TStatement] [TStatement]
| While Expr [TStatement]
| Print Expr

As soon as the parser has seen the keyword WHILE it must detect a complete while-state-
ment as the next item. The keyword WHILE must always be followed by an expression, the
keyword DO, stmts etc. This is used in the construction of the following parser for state-
ments. As soon as a piece of input is recognized as a statement, it is useless to look
whether it is perhaps also an other statement. So, we will use <!> instead of <|>.

stmt :: Parser Char TStatement
stmt = IFstmt <!> WHILEstmt <!> PRINTstmt <!> ASSIGNstmt <!> declaration

WHILEstmt :: Parser Char TStatement
WHILEstmt = WHILEtok

 &> (expr <!> pError "WHILE: condition expected")
<&> (DOtok <!> pError "WHILE: DO expected")
 &> (stmts <!> pError "WHILE: Body expected")

<@ (\(c,b) -> While c b)

stmts :: Parser Char [TStatement]
stmts = BEGINtok

 &> statements <!> pError "stmts expected")
<& (ENDtok <!> pError "END expected")

<|> stmt <@ (\s -> [s])

statements :: Parser Char [TStatement]
statements = listOf stmt (spsymbol ';'

Using:
WHILEtok = sptoken ['WHILE']
DOtok = sptoken ['DO']
BEGINtok = sptoken ['BEGIN']

218 Functional programming in Clean

ENDtok = sptoken ['END']
sptoken t = sp (token t)
spsymbol s = sp (symbol s)

The most naive implementation of pError is just
pError s = abort s

A slightly more sophisticated implementation of this function also shows the piece of
input that cannot be parsed.

pError :: String -> Parser s r | ToString s
pError mes = q
 where q xs = abort ("Parse error: "+mes+". Input = "+show (take 20 xs)+"\n")

show :: [s] -> String | ToString s
show list = "["+ showTl list
 where showTl [] = "]"
 showTl [a:r] = toString a + "," + showTl r

Since it is unknown which part of the input caused the error, we have arbitrary chosen to
show the first 20 input symbols.

Error recovery

In the previous sub-section we showed how the parser can be interrupted when an error is
detected. It is not always appropriate to abort a program when an error is detected. A
way to indicate an error and to continue parsing is to store an indication of the error in
the parse tree constructed. In order to do this we extend the algebraic type(s) for the
parse tree with an error indicator. The type for statements in Tiny becomes:

:: TStatement = Declare Variable Int
| Assign Variable Expr
| If Expr [TStatement] [TStatement]
| While Expr [TStatement]
| Print Expr
| StmtError // The error indication

Whenever necessary we can give StmtError some arguments to indicate the error that has
been detected. A similar extension can be made to the type Expr which represent the ex-
pressions. This can be used to replace an omitted expression or body in a while-loop:

WHILEstmt = WHILEtok
 &> (expr <!> succeed ExprError)
 <&> DOtok
 &> (stmts <!> succeed [StmtError])

 <@ (\(c,b) -> While c b)

In general an error does not consists of the omission of an entire language construct, but
consists of some illegal language construct. This kind of error is not handled properly by
the kind of parsers in the previous section: the erroneous construct remains present in the
input. It is usually difficult to indicate where the erroneous construct stops. The functions
skip and skipAlso can be used to resynchronise the parser and the input. These functions
drop at most n elements of the input stream until the parser until given as arguments suc-
ceeds. When the parser until succeeds the result is created by the parser result given as
second argument to skip or skipAlso.

skip :: Int (Parser s x) (Parser s r) -> Parser s r
skip n until result = p n
 where p 0 xs = [] // n symbols are skipped fail

p n xs = case until xs of
 [] -> case xs of // parser until failed

 [] -> [] // empty input: skipping fails
 [_:tl] -> p (n-1) tl // skip current input token

 ne -> result xs // until succeeds: apply result parser

The function skipAlso is similar. The difference with skip is that also the input fragment
that stopped the skipping is removed from the input.

II.4 Parsers DRAFT 12 augustus 1997 219

skipAlso :: Int (Parser s x) (Parser s r) -> Parser s r
skipAlso n until result = skip n until (until &> result)

Using this function the error handling in the parser for the while-loop can be improved.
We assume that only one error occurs is each while-loop. This implies for instance that
when parsing the condition fails the keyword DO will be present. The parser for while
statements can now be improved to:

WHILEstmt = WHILEtok
 &> (expr <!> skip 20 DOtok (succeed ExprError)

 <!> skipAlso 20 expr (succeed ExprError))
<&> (DOtok <!> skipAlso 100 DOtok (succeed [])

 <!> succeed [])
 &> (stmts <!> endStmt [StmtError]

 <!> skipAlso 20 stmt (succeed [StmtError]))
<@ (\(c,b) -> While c b)

endStmt :: r -> Parser Char r
endStmt r = skipAlso 100
 (ENDtok <@ K [StmtError]
 <|> (BEGINtok &> (listOf stmt (spsymbol ';') <& ENDtok)))
 (succeed r)

Although this parser is able to recover from many errors in the input we cannot be satis-
fied with it. The major reason for rejecting this parser is that it is too good in recover-
ing. Consider for instance the following input

WHILE n >> 0
 DO BEGIN x := x+1 END;

The condition of this loop is an erroneous expression since >> is not an valid operator.
Parsing the conditions yields the expression VAR "n" as condition. The parser DOtok fails
since the input contains [' >> 0 DO …']. By dropping some characters the error recovery
can resynchronise the input with the parser and the parser recognise the token DO.
Unfortunately the result of parsing the token DO is thrown away. So, there seem to be no
way to include an error message in the parse tree!

The solution is to detect this type of error one level higher. Instead of detecting that the
keyword DO is missing and start skipping to find this keyword, we let the parser fail. We
can check whether parsing the whole while-loop succeeds or not.

WHILEstmt = WHILEtok &>
((expr <!> skip 100 DOtok (succeed ExprError))

<&> DOtok
 &> (stmts <!> endStmt [StmtError])

 <@ (\(c,b) -> While c b)
 <!> skipAlso 100 endStmt (succeed StmtError))

Listing errors

An other reason for being unsatisfied with the current approach of error recovery is that an
error is not detected by the rest of the program before the part of the parse tree represent-
ing the error is actually used. A way to generate error messages without aborting the pro-
gram is to write these error messages to a file. In order to prevent carrying this file
around we will use the file stderr (standard error) as target. The appropriate version of
the function pError is:

pError :: String (Parser s r) -> Parser s r | toString s
pError mes p = q
 where
 q xs = let! out = fwrites message stderr
 in K (p xs) out
 where message = "Parse error: "+mes+". Input = "+show (take 20 xs)+"\n"

220 Functional programming in Clean

Although this approach serves our goals, one can argue that this is not a very nice solution
since printing error messages is a kind of side-effect. The price we have to pay for being
fully referential transparent is that a file has to be passed around in the parser.

An other way to handle errors is of course to change the type Parser. Instead of a list of
two-tuples a parser yields a list of three tuples. The additional field in the results is used
to pass a list of error messages.

Combining the tools introduced in the previous sub-sections we can write parsers that
does error detection, error recovery and list the errors found on stderr. As example we
show again the parser for while statements in Tiny.

WHILEstmt = WHILEtok &>
((expr <!> pError "WHILE: condition expected"

(skip 100 DOtok (succeed ExprError)))
 <&> (DOtok <!> pError "DO expected" fail)
 &> (stmts <!> pError "Body expected" (endStmt [StmtError]))

 <@ (\(c,b) -> While c b)
 <!> pError "Invalid WHILE" (endStmt StmtError))

endStmt :: r -> Parser Char r
endStmt r = skipAlso 100
 (ENDtok <@ K [StmtError]
 <|> (BEGINtok &> (listOf stmt (spsymbol ';') <& ENDtok)))
 (succeed r)
 <!> abort "endStmt failed"

In order to show that it is still possible to interrupt the parser in when error recovery fails
we force endStmt to stop the program when the skipping fails to find a new synchronisa-
tion point.

5.15 Self application
Although in the preceding sections it is shown that a separate formalism for grammars is
not needed, users might want to stick to, for example, BNF-notation for writing gram-
mars. Therefore in this section we will write a function that transforms a BNF-grammar
into a parser. The BNF-grammar is given as a string, and is analyzed itself of course by a
parser. This parser is a parser that as parse tree yields a parser! Thus, the title of this sec-
tion is justified.

This section is structured as follows. First we write some functions that are needed to
manipulate an environment. Next, we describe how a grammar can be parsed. Then we
will define a data structure in which parse trees for an arbitrary grammar can be repre-
sented. Finally we will show how the parser for grammars can yield a parser for the lan-
guage described by the grammar.

Environments

An environment is a list of pairs, to represent a finite mapping from arguments to results
(a function in the mathematical sense of the word). The function assoc can be used to as-
sociate a value to its image under the mapping in the given environment (applying a
'function' to an argument).

::Env a b :== [(a,b)]

assoc :: (Env a b) a -> b | Eq, toString a
assoc [(u,v):ws] x | x == u = v
 = assoc ws x
assoc _ x = abort ("No association for " +++ toString x)

We also define the function mapenv that applies a Clean function to all images in an envi-
ronment.

II.4 Parsers DRAFT 12 augustus 1997 221

mapenv :: (a->b) (Env s a) -> Env s b
mapenv f env = [(x,f v) \\ (x,v) <- env]

Grammars

In a grammar, terminal symbols and nonterminal symbols are used. Both are represented
by a list of characters. We provide a datatype with two cases for the two kinds of sym-
bols:

::Symbol = Term [Char]
 | Nont [Char]

Equality on these symbols is defined in the obvious way:
instance == Symbol
 where (==) :: !Symbol !Symbol -> Bool

(==) (Term s1) (Term s2) = s1 == s2
(==) (Nont s1) (Nont s2) = s1 == s2
(==) _ _ = False

The right hand side of a production rule consists of a number of alternatives, each of
which is a list of symbols:

::Alt :== [Symbol]
::Rhs :== [Alt]

Finally, a grammar is an association between a (nonterminal) symbol an the right hand
side of the production rule for it:

::Gram :== Env Symbol Rhs

Grammars can easily be denoted using the BNF-notation. For this notation we will write
a parser, that as a parse tree yields a value of type Gram. The parser for BNF-grammars in
parameterized with a parser for nonterminals and a parser for terminals, so that we can
adopt different conventions for representing them later. We use the elementary parsers sp-
token and spsymbol rather than token and symbol to allow for extra spaces in the grammar
representation.

bnf :: (Parser Char [Char]) (Parser Char [Char]) -> Parser Char Gram
bnf nontp termp = <*> rule
 where rule = (nont
 <&> sptoken ['::='] &> rhs <& spsymbol '.'
)
 rhs = listOf (<*> (term <|> nont)) (spsymbol '|')
 term = sp termp <@ Term
 nont = sp nontp <@ Nont

A BNF-grammar consists of many rules, each consisting of a nonterminal separated by a
::=-symbol from the rhs and followed by a full stop. The rhs is a list of alternatives, sepa-
rated by |-symbols, where each alternative consists of many symbols, terminal or non-
terminal. Terminals and nonterminals are recognized by the parsers provided as parame-
ter to the bnf function.

An example of a grammar representation that can be parsed with this parser is the gram-
mar for block structured statements:

blockgram = ['BLOCK ::= begin BLOCK end BLOCK | .']

Here we used the convention to denote nonterminals by upper case and terminals by lower
case characters. In a call of the bnf functions we should specify these conventions. For ex-
ample:

Start :: Gram
Start = some (bnf nont term) blockgram
 where nont = <!+> (satisfy isUpper)
 term = <!+> (satisfy isLower)

The output of this test is the following environment:
[(Nont ['BLOCK'],[[Term ['begin']

222 Functional programming in Clean

 , Nont ['BLOCK']
 , Term ['end']
 , Nont ['BLOCK']
]
 , []
]
)
]

Parse trees

We can no longer use a data structure that is specially designed for one particular gram-
mar, like the Expr type above Instead, we define a generic data structure, that describes
parse trees for sentences from an arbitrary grammar. We simply call them RTree; they are
instances of multibranching trees or rose trees:

::RTree = Node Symbol [RTree]

Parsers instead of grammars

Using the bfn function, we can easily generate values of the RTree type. But what we really
need in practice is a parser for the language that is described by a BNF-grammar. So
let's define a function

parsGram :: Gram Symbol -> Parser Symbol RTree

that given a grammar and a start symbol generates a parser for the language described by
the grammar. Having defined it, we can let is postprocess the output of the bnf function.

The function parsGram uses some auxiliary functions, which generate a parser for a symbol,
an alternative, and the rhs of a rule, respectively:

parsGram :: Gram Symbol -> Parser Symbol RTree
parsGram gram start = parsSym start
 where
 parsSym :: Symbol -> Parser Symbol RTree
 parsSym s=:(Nont n) = parsRhs (assoc gram s) <@ Node s
 parsSym s=:(Term t) = symbol s <@ K [] <@ Node s

 parsRhs :: (Rhs -> Parser Symbol [RTree])
 parsRhs = choice o (map parsAlt)

 parsAlt :: (Alt -> Parser Symbol [RTree])
 parsAlt = sequence o (map parsSym)

The parsSym function distinguishes cases for terminal and nonterminal functions. For ter-
minal symbols a parser is generated that just recognizes that symbol, and subsequently a
Node for the parse tree is build.

For nonterminal symbols, the corresponding rule is looked up in the grammar, which is
an environment after all. Then the function parsRhs is used to construct a parser for a rhs.
The function parsRhs generates parsers for each alternative, and applies the function choice
over the list of alternatives. The function parseAlt, finally, generates parsers for the indi-
vidual symbols in the alternative, and combines them with the sequence function.

A parser generator

In theoretical textbooks, a context-free grammar is usually described as a four-tuple con-
sisting of a set of nonterminals, a set of terminals, a set of rules and a start symbol. Let's
do so, representing a set of symbols by a parser:

::SymbolSet :== Parser Char [Char]
::CFG :== (SymbolSet,SymbolSet,[Char],Symbol)

Now we will define a function that takes such a four-tuple and returns a parser for its lan-
guage. Would it be too immodest to call this a parser generator?

parsgen :: CFG -> Parser Symbol RTree

II.4 Parsers DRAFT 12 augustus 1997 223

parsgen (nontp, termp, bnfstring, start)
 = some (bnf nontp termp <@ parsGram) bnfstring start

The sets of nonterminals and terminals are represented by parsers for them. The grammar
is a string in BNF-notation. The resulting parser accepts a list of (terminal) symbols and
yields a parse tree.

Lexical scanners

The parser that is generated accepts Symbols instead of Chars. If we want to apply it to a
character string, this string first has to be tokenized by a lexical scanner.

For this, we will make a function twopass, which takes two parsers: one that converts char-
acters into tokens, and one that converts tokens into trees. The function does not need any
properties of character, token and tree, and thus has a polymorphic type:

twopass :: (Parser a b) (Parser b c) -> Parser a c
twopass lex synt = p
 where p xs = [(rest,tree)
 \\ (rest,tokens) <- <*> lex xs
 , (_,tree) <- just synt tokens
]

Using this function, we can finally parse a string from the language that was described by
a bnf grammar:

blockgram = ['BLOCK ::= begin BLOCK end BLOCK | .']
upperIdent = <!+> (satisfy isUpper)
lowerIdent = <!+> (satisfy isLower)
block4t = (upperIdent, lowerIdent, blockgram, Nont ['BLOCK'])
final = twopass (sp lowerIdent <@ Term) (parsgen block4t)
input = ['begin end begin begin end end']

This can really be used in a program like:
Start = some final input

References
Bird, R. and P. Wadler, Introduction to Functional Programming, Prentice Hall, 1988.

Burge, W.H. Parsing. In Recursive Programming Techniques, Addison-Wesley, 1975.

Fokker, J.: Functional Parsers. In: Advanced Functional Programming (Jeuring and Meijer
eds.) LNCS 925. 1995.

Hutton, Graham. Higher-order functions for parsing. J. Functional Programming 2 pp:
323–343. 1992.

Wadler, P. How to replace failure by a list of successes: a method for exception handling,
backtracking, and pattern matching in lazy functional languages. In Functional
Programming Languages and Computer Architecture, (J.P. Jouannaud, ed.), Springer,
1985 (LNCS 201), pp. 113–128.

Wadler, Philip. Monads for functional programming. In Program design calculi, proc. of
the Marktoberdorf Summer School, (M. Broy. ed.), Springer, 1992.

Exercises
5.1 Since satisfy is a generalization of symbol, the function symbol could have been defined as

an instance of satisfy. How can this be done?

5.2 When defining the priority of the <|> operator, using the infixr keyword we also specified
that the operator associates to the right. Why is this a better choice than association to the
left?

224 Functional programming in Clean

5.3 Define the function just using a list comprehension instead of the filter function.

5.4 Why don't we use a four-tuple in the lambda pattern in section 5.6 instead of a two-tuple
with as second element a two-tuple with as second element a two-tuple?

5.5 Why is the function K, which is defined by K x y = x in the standard environment, needed
in the function parens in section 5.6? Can you write the second alternative more concisely
without using K and <@?

5.6 The parentheses around open &> parens <& close in the first alternative, of the function
parens in section 6are required in spite of our clever priorities. What would happen if we
left them out?

5.7 The function foldparens is a generalization of parens and nesting. Write the latter two as
an application of foldparens.

5.8 What would happen if we omit the just transformer in the examples in section 5.6?

5.9 Write a parser that yields the numbers of parentheses pairs in a given sequence of characters.

5.10 Redefine the parser token in terms of symbol and <:&>, symbol should be used to parse the
individual elements of the token.

5.11 Consider application of the parser <*> (symbol 'a') to the string ['aaa']. In what order
do the four possible parsings appear in the list of successes?

5.12 As another variation on the theme repetition, define a parser sequence combinator that
transforms a list of parsers for some type into a parser yielding a list of elements of that
type. Also define a combinator choice that iterates the operator <|>.

5.13 As an application of sequence, define the function token that was discussed in section 2.

5.14 Let the parser for reals recognize an optional exponent.

5.15 The parser sp given in section 5 is written in an ad-hoc way. Define this parser using parsing
combinators to recognize spaces and to discard them.

5.16 Is it correct to use chainr in the parser for expressions instead of chainl?

5.17 Define the operator <&> using the definition of <&=>.

5.18 Write a parser that computes the value of constant parts (containing no identifiers) in the
expressions. The parser should yield ([],Int 3) in response to the input ['1+2'].

5.19 Extend the given parser fragments to a complete parser for Tiny, generating error messages
whenever appropriate.

5.20 Extend the given parser fragments to a complete parser for Tiny, generating error messages
whenever appropriate and doing error recovery from a number of errors. Consider to change
skip such that it uses pError to indicate that error recovery fails.

5.21 What is the <@ K [] transformation in the function ParsGram used for?

5.23 We used uppercase and lowercase identifiers to distinguish between nonterminals an termi-
nals. If the namespaces of nonterminals and terminals overlap, we have to adopt other
mechanisms to distinguish them, for example angle brackets around nonterminals and
quotes around terminals. How can this be done?

5.22 Make a parser for your favourite language.

II.4 Parsers DRAFT 12 augustus 1997 225

