
Annotating Objects for Transport to Other Worlds
David Ungar

Sun Microsystems Laboratories
2550 Garcia Ave., Mountain View, CA 94043

(415) 336-2618, (415) 969-7269 (fax)
david.ungar@sun.com

http://self.smli.com/-ungar

Abstract

In Self 4.0, people write programs by directly
constructing webs of objects in a larger world of
objects. But in order to save or share these
programs, the objects must be moved to other
worlds. However, a concrete, directly constructed
program is incomplete, in particular missing five
items of information: which module to use,
whether to transport an actual value or a
counterfactual initial value, whether to create a
new object in the new world or to refer to an
existing one, whether an object is immutable with
respect to transportation, and whether an object
should be created by a low-level, concrete
expression or an abstract, type-specific expression.
In Self 4.0, the programmer records this extra
information in annotations and attributes. Any
system that saves directly constructed programs
will have to supply this missing information
somehow.

1. Introduction

ways to capture intangible intentions and plans (as
declarations), and pedagogical advantages for people
with mathematical backgrounds. Given these benefits,
it is not surprising that most object-oriented

programming systems require some descriptive
information right at the start. For example, before a
Smalltalk, C++, Eiffel, or Beta programmer can begin
to experiment with a point object, he must first step
back and define a description, the class of all possible
points. Or, before a C++ programmer can use a hand-
drawn icon in her program, she must figure out some
way to get the picture data into her program (see
Figure 1).

But, it may not always be appropriate to enforce
description before experimentation. While some
problems may demand a lot of prior analysis, others
may demand more exploration of the solution space.
Some programmers may work best by designing first
and coding later, but others, especially more casual
programmers solving smaller problems, may work
better by iterating construction and design. We are
interested in building a programming environment that
ultimately can support both styles in order to foster

Computer Scientists usually think of a computer creativity, exploration, and accessibility.
program as a static description, abstraction, or model of
a dynamic computation. This formulation has led to The Self object-oriented programming system strives
significant accomplishments: methods for the analysis for a more concrete and direct feeling [Smith 11,
of complex problems, a clean separation of [Smith 21. We hope that this emphasis will make it
programming from execution, frameworks for easier to explore and create desired behaviors and that
reasoning about a computation’s correctness and speed, the more descriptive information can be added later, if

Permission to make digital/hard copy of part or all of this work for personal so desired. That is why the language is based upon
or ClaSSrOOm use is granted without fee provided that copies are not made
or distributed for profit or commercial advantage, the copyright notice, the

prototypes instead of classes, why the implementation
title of the publication and its date appear, and notice is given that hides the information needed to describe objects’
copying is by permission of ACM, inc. To copy otherwise, to republish, to
post on servers, or to redistribute to lists, requires prior specific permission formats, and why the user interface supports
and/or a fee. hyperdirect manipulation, That is also why a Self
OOPSLA ‘95 Austin, TX, USA
0 1995 ACM 0-89791-703~0/95/0010...$3.50

73

/-
+-----_

. --. .

/-

/ ---

\ -A-
\
\ ---

\

What

\ 0 \ -
$1

- -r--7 ‘, - L---l / . . . / - 0 . / /-
t7~e-pGgAT1YrnZc must imagine

I 'I
/ Class Stack

Var sp, contents

Method initialize (
sp = 0;
contents = new vector[lOOl;

Lethod push (. . .)

What the programmer sees = what is saved

Figure 1. A program as a description: Traditionally, a program is thought of as describing objects to be created
at run-time. Because it is a description, it can be directly used in many worlds of objects. For example, the stack
class shown here could be used in many separate worlds of objects. But, being a description, the program cannot
be directly used to visualize the objects in a running program; the programmer must make a mental leap.

program is considered to be a collection of live,
running objects, rather than static text. Since the
programmer directly manipulates objects by adding
methods or variables and by setting variables to their
initial values, we say that the Self system and its appli-

cations are built out of directly constructed objects or
programs. Such a concrete notion of a program can

bring the programmer closer to his task, as if he were

touching them instead of looking at them (Figure 2).

However, any system that posits a less-descriptive
model of programming must address some thorny
issues, and one of the thorniest is saving programs. A
program (or cluster of objects) constructed in one
world of objects (a.k.a. a snapshot, or virtual image)
needs to be saved in some archival form such as a
source file so that it can be moved into another world of
objects. While the code can just be copied, the web of
data references defies simple transcription. For
example, the user might build a stack object out of a
stack pointer and a vector, then try to move the stack
into another world of objects. A literal move would try
to move the vector object and would literally copy the

stack pointer value, when what the user really intends
is to create a new vector and set the stack pointer to
zero. A system that attempts to move directly
constructed objects like this stack must confront the
gap between the extensional information present in
memory and the intentional information it needs.

Recognizing and characterizing this gap was the
hardest part of building the Self 4.0 transporter, a
subsystem intended to move directly constructed Self
programs from one world to another. In the course of
developing the transporter we were forced to confront
many situations in which different kinds of missing
information had to be supplied. In other words, by
taking on the task of recreating a more descriptive,
intentional program from an existential, extensional
web of objects, we had to rediscover what would have

been conveyed in the description that was not
contained in the objects. At this writing (1995), the
transporter has gone through one major redesign, has
been in daily use for 2 years in its present form, and is
part of a publicly available system.+ This paper

+ Browse http://self.smli.com or fkp from self.smli.com.

74

What the programmer must imagine

/
/

/

\
\

\

What the programmer sees

/A-- ----_ . --. . ---

--- /

What must be saved

create object

add slot named: "sp" containing: 0

add slot named: "contents" containing: "vector copysize: 100"

add slot named: "push" containing method II..."

Figure 2. A program as the objects themselves: When a program is directly constructed with concrete ob-
jects, the programmer does not have to make such a large mental leap from the program to the actual objects.
However, this view of a program omits information that would be needed in order to save it in a form that could
be imported into another world of objects. In this example, although a stack object may have any value in its stack
pointer, the source should always create the sp slot with zero in it. This information about initial values is missing
from the objects themselves.

summarizes what we have learned about the gap
between conventional, descriptive programs and

directly constructed ones. We hope that other

researchers who are faced with similar problems can
profit from a discussion of the difference between the

information needed to perform a given object-oriented

computation and the information needed to transport
the objects that perform that computation into another
world.

The rest of this paper introduces our modules in
section 2, discusses the pieces of descriptive
information needed to transport programs in section 3,
presents some measurements in section 4, recounts
prior work in section 5, and summarizes itself in
section 6.

2. Background

Before discussing the extra information needed for any
system that transports directly constructed programs, it
will be helpful to explain some design choices peculiar
to the Self 4.0 transporter. Others will confront these
issues, but may well choose different solutions.

2.1 What is a module? Changes or Pieces

As mentioned above, this work addresses a need to
move programs from one web of objects to another.
Accordingly, it would seem to follow that a program
should be modelled as a change to a web of objects.
Alternatively, a program could be modelled as pieces
of stuff (objects, slots) in the world of objects. For

75

example, in the “changes” model, a programmer could
point to a method and ask “What module caused this
object to be created?” whereas in the “pieces” model a
programmer would ask “To which module does this
object belong?” The “changes” model holds out the
promise of a powerful, rigorous framework: If a
program could be represented as a set of changes, and
if these changes were appropriately commutative, it
would be easy to transport it.+ The “pieces” model
seems more concrete, since an object or slot is easier to
picture than a change.

Given our obsession with concreteness, it is not
surprising that we chose the “pieces” model. Two
smaller concerns also contributed to this choice:
minimizing the research risk in an essential portion of
infrastructure, and the desire to be able to bootstrap the
system by reading source files into an empty world. We
therefore opted to save the pieces as Self source
expressions suitable for bootstrapping and to continue
to manage changes with a conventional source code
control system, the Revision Control System (RCS)
[Tichy].

Although other systems may opt for the more powerful
“changes” model, they will still have to cope with a
scarcity of intentional information in directly
constructed programs. For example, under the
“changes” model, the stack pointer is considered to be
an addition to the stack instead of a part of it, but this
paradigmatic shift does not resolve the dilemma of
whether to save its current value or its initial value.
Although we took the simpler path, these lessons
should also help more adventuresome travellers.

2.2 What belongs to a module?
Objects or slots?

What is the unit of object-oriented programming? In
most programming textbooks writing a program is
described as creating one or more new classes. For
example, a program to construct palindromes might
add a new Palindrome class. In Self the same
operation would be the creation of one or more new
objects, that could either function as prototypes, or

+ For two interesting frameworks, see [Bracha] and [Ossher].

repositories of shared behavior called traits [Ungar]. So
the equivalent operation would be the creation of a new
object to serve as the prototypical palindrome, and
another object to be the parent of all palindromes
holding the shared traits.

In a Smalltalk image there are many instances that are
not part of a program, but are created by the program.
These objects need not be transported, unlike the
classes that comprise the program. Similarly, a Self
world also contains objects created by the program that
should not be saved by the transporter. However since
Self unifies classes and instances, its incidental objects
are harder to distinguish from the essential ones that
must be written as part of the program. The Self 4.0
transporter observes this distinction by only attempting
to save objects that are accessible from the lobby,
which is the root of the global name space. These
saved, globally accessible objects are called weif-
known objects. For example the prototype palindrome
and its parent would be well-known, but most copies of
the prototype would not.

On the other hand, in addition to the creation of new
well-known objects, the introduction of new
functionality to a system often requires the extension of
old well-known objects with new attributes. For
example, a Smalltalk program to find palindromes
might add a method to class String called i sPal-
indrome. It could not subclass String, because it
must operate with strings created by other programs. In
Self, a slot can be used to hold a method, a local or
global constant, or a class, instance, or local variable.
Therefore the Self analogue to extending existing
classes is the addition of slots to existing objects (see
Figure 3). So for the transporter, a program is not a set
of objects, but rather is composed of individual slots.
Such a fine granularity adds a degree of flexibility that
seems useful for any singly dispatched object-oriented
language.$

t Object-oriented languages with multiple dispatch may be able to
achieve the same flexibility by merely supplying additional
arguments. For another view on why modules should be different
than classes, see [Szyperski].

76

2.3 Source Files and Order Independence

/traits string \
I=[in “in,“”

in palindrome modul

Figure 3. Why modules are composed of slots
instead of objects: Trait s string is the par-
ent of all strings and holds their shared behavior.
Most of its slots belong to the string module, but
another module, palindrome, has been added
to the system. This module has extended the be-
havior of all strings by adding a new slot to
traits string, called ispalindrome.
This incremental extension would be much harder
if all the slots in an object were constrained to re-
side in the same module.

Since the raw virtual machine reads a file at a time, one
module corresponds exactly to one source file. To
allow for large composite modules or subsystems, each
module includes a list of submodules, so that reading in
the source file for a module also causes the submodule
files to be read.

Sometimes the slots in an object are spread out among
several files, so that the object is built incrementally as
each file is read. It is even possible to read in a file that

adds a slot to an object before reading in the file that
creates the object! In order to reduce the chances for
disaster that sensitivity to file ordering would engender,
the transporter endeavors to remain insensitive to it.
For example, when reading a file that adds a slot to an
object, the transporter will create a placeholder object
if the object itself has not been created yet. Subse-
quently, when the object itself is created, any pointers
to the place holder are redirected to the real object, and
any slots in the place holder are added to the real
object. Addressing this side issue removes one barrier
to the transporter’s usability; other similar systems may
also have to resolve ordering issues.

3. What is Missing?

To briefly recap, the Self transporter allows the
programmer to take a program that adds some
functionality to a snapshot and move that program to
another snapshot. It accomplishes this task by writing
the slots that comprise the program to a source file that
can be read in and evaluated in the new snapshot to
recreate the program. However, in order to write out
the slots, the transporter must recover information
about the programmer’s intentions that is missing from
the web of objects. Any system that migrates webs of
objects from world to world must face the task of
recovering such information. This section enumerates
the kinds of information that we believe must be so
recovered. It is summarized in Table 1.

Kind of information
Needed generally

vs.
needed for Self

How Supplied Where

Which module does a slot belong to?

Use slot’s actual contents vs. a fixed initial value?

General

General

per-slot annotation

per-slot annotation

section 3.1

section 3.2

Should slot just reference a preexisting (global) object?

Should identity of an object be respected?

Is it possible to create an object with an abstract

General

General

General

per-object annotation section 3.3

sending message to the object section 3.4

sending message to the object section 3.5
expr&sion and if so what? -

Is this object ineligible for abstract creation (i.e. a
prototy&)?

Should this object inherit slots from another and if so,
which?

Self

Self

sending message to the object section 3.5

per-object annotation section 3.6

Table 1. Extra information needed to move objects

77

3.1 Mapping Slots to Modules

The first decision facing the transporter concerns which
slots to put in which modules. An earlier version of the
transporter required the programmer to specify module
boundaries. For example, the programmer would
indicate that the global slot “point” belonged to the
point module, and the transporter would infer that
every slot in the transitive closure (up to slots explicitly
designated in other modules) were also in the point
module (Figure 4, top).

This centralization was convenient for the transporter,
but difficult for the programmer, who could not readily
find the information pertinent to a given object or slot.
To make matters worse, the system could not even
quickly tell the programmer if a module was correctly
specified because an expensive global closure
computation was needed to ensure that none of the
module’s transitively reachable slots were also
ambiguously transitively reachable in some other
module.

To solve these problems, the present (1995) transporter
adopts a more explicit approach; each slot is annotated
with the name of its module. The annotations are
separate enough so that they can be normally hidden to
avoid distracting the programmer when not needed,
and integrated enough to feel like a concrete part of a
slot or object when exposed (Figure 5). The
programmer can inspect or change which module a slot
belongs to by reading or writing its annotation, and the
transporter can prompt for this information if it is
missing. Since each object can possess slots in different
modules, the programming environment shows a
summary of the modules of an object, sorted by
frequency (Figure 5, top).

To support this decentralization, the Self Virtual
Machine was extended to allow any slot or object to be
annotated with another object,+. In addition to holding
transportation information, annotations also provide a
convenient place for comments on slots or objects.

+ The spatial overbead to support annotations is n+l words per
well-known object, where n is the number of slots in the object.

Module membership centralized in module objects

traits string

module string

(X)

module palindrome
mi

Module membership distributed in each slot

traits string

size (in module string)
capitalize (in module string)
spalindrome (in module palindrome)-

Figure 4. Centralized vs. Distributed Module
Information: In the first version of the transporter,
information about module membership was con-
centrated in objects representing the specific mod-
ules, as shown on top. This arrangement was so
confusing to programmers that the transporter was
redesigned to store this information in the actual
slots, as annotations, as is shown on the bottom.

Figure 5. The module annotation in a slot:
The user has exposed the annotation of the y slot in
the prototypical point. The portion of the annotation
shown here indicates that the slot belongs to module
point. The same object contains a rho slot in
module polar~ o i nt . The module summary
shown at the top of the object, shows the modules of
all the object’s slots, sorted by frequency.

78

has the F o 11 o

ontents in the Self 4.0 programming environment:
that are globally accessible. The infinity slot

in its annotation, indicating that the actual value of this
On the other hand, the f i 1 e T abl e : slot’s anno-

vector copysize: 64
entered in its initialization field. This annotation will ensure that the transporter writes
an expression for a new, empty vector as the contents of the f i 1 eT ab 1 e slot. If tbis
were not done, data for currently open files would be saved.

Unfortunately, simplifying the programmer’s model
complicated the transporter’s task. In order to write out
a single source file without inspecting every slot, the
transporter has to maintain a cache that maps modules
(source file names) to sets of slots. And, in order to let
the programmer know which modules have been
changed and need to be saved, the transporter must
incrementally (if conservatively) track any transitive
consequences of actions in the programming
environment. For example, if the user removes a slot in
one module that renders part of another unreachable
and therefore subject to garbage collection, the other
module needs to be saved, too, in order to remove the
transitively deleted information.

Both needs are met by the same mechanism: a global
search that fills a cache and an incremental traversal
from the point of change that (conservatively) updates
the cache after every programming change. (In Self a
programming change is an addition of any slot, a
deletion of any slot, or a change to the contents of a
constant slot, e.g. a slot holding a method.) In addition
to maintaining the mapping from module to set of slots
so a module can be written out, the cache also
maintains information for each module about which
slots have been altered since saving the module, so that

a list of changed modules can be displayed. A simple
change such as editing a method requires no search at
all; the one slot is added to its module’s dirty slot set. A
more complicated change (such as altering the
topology of a name space) takes longer, but still only a
few seconds.

3.2 What’s in a slot? Actual or Initial Contents

Once the transporter has determined that it must write
out a particular slot it must construct an expression for
the value of the slot. If the slot contains a method this
expression is merely the source code for the method,
but if the slot contains data it is not so clear what to do.
A purely extensional transporter would always write
out an expression for the actual contents of a slot, but
sometimes the programmer intends an initial value to
be written instead. Consider a slot holding a list of
cached items. Although the current contents of the slot
is a non-empty list, this slot needs to be initialized to an
empty list when it is read in. In order to obey the
programmer’s intention that a slot be initialized to a
counterfactual value, the slot may be annotated with an
expression for its initial value. If a slot is so annotated,
the transporter ignores its contents and writes out the
expression instead (Figure 6).

79

would be transported as which evaluates to

With Creator Information

creator annotation
points back to a,

which distinguishes
the reference from “a”

which allows the which preserves identity
transporter to treat

that reference differently

-. - -
Figure 7. Creator annotations preserve identity: No matter how many other slots refer to it, an object must be
created only once. The Self 4.0 transporter obeys this constraint by annotating each object with a backpointer to a sin-
gle slot responsible for the object’s creation. In this example, three slots in different modules all point to the same ob-
ject. Without creator annotations, three different objects would result from reading tbe three modules. With creator
annotations, one of the slots is designated as the creator, so that the three slots’ relationship can be maintained.

3.3 Maintaining Identity:
Reference vs. Creation

Although a slot’s annotation may direct the transporter lobby that plays a role somewhat like Class

to write out its actual contents, just what that means Ob j ect in Smalltalk. Global variables are expressed
remains open to question. Does the programmer intend in Self by putting slots in the lobby or one of its
for the slot to create a new object or merely to refer to parents. Although the creator annotation only points
some existing one? If two slots point to the same one level back, by transitively following these
object, only one of them had better create the object; annotations the transporter can find the complete path
the other should be initialized to refer to the contents of from the lobby to an object, if it exists. The transporter
the first (Figure 7). then uses this path to install the slot when it is read in.

In other words, every time the transporter follows a
reference to an object, it must decide if that reference
or some other one creates the object. If an object is
reachable by more than one reference, there is no way
to tell which one was intended to create it without
additional information.

Accordingly, each object is annotated with its creator
slot, a backpointer to the slot that is intended to create
it. (The backpointer actually points to an object
containing the slot’s holder and name.) In Self the
inheritance graph funnels through an object called the

The creator annotation also lets the transporter
distinguish between well-known objects created by
reading in source files, and clones created by running
programs. In Self, a copy of the original prototypical

set will look the same as the original, and will even
have the same annotations. However, since its putative

creator slot (set) will not point back to the clone, the

transporter can tell the difference between objects it
must file out and those that merely have been
incidentally created. Thus, the creator information
helps identify a well-known object without a costly
search for all references to the object.

80

3.4 When Does Identity Matter?

Most objects include externally observable mutable
state, and so their identities matter. For example, if two
variables refer to the same stack, they are causally
connected; pushing a value with one will affect the
value popped from the other. Since programs rely on
causal connections, the transporter must preserve them
and the creator annotations described above
accomplish this. However, some objects behave
immutably; although such an object may cache
information, there is no way to cause an externally
visible side-effect upon it. For example a point object
in Self behaves immutably, so that adding two points
yields a new point containing the sum, rather than
changing one of the old ones. For such objects, their
values are more important that their identities, which
are not observable anyway. (For example, points
override the identity message, ==, to send equality, =.)
With such objects, it is better to avoid maintaining their
identity, and to just transport out a new copy for every
reference. Otherwise, for example, every slot
containing a particular color object would be initialized
as referring to whatever slot was annotated as the
creator of that color. The transporter must preserve an
immutable object’s value rather than its identity.

Unlike the other information discussed up to this point,
externally observable mutability is associated with an
object’s abstract type, and follows inheritance patterns.
For example all of Self’s number objects (small
integers, big integers, floats) are externally immutable
and all of them also inherit from a common ancestor.
Because of mutability’s correspondence with
inheritance patterns, the transporter does not use
annotations to encode this property. Instead, it is
encoded in an attribute, isImmutableFor-

F i 1 ingOut. Objects inherit a default value of
false, but immutable objects override this slot with
true. Implementation aside, the important point is
that whether or not an object is observably immutable
cannot be effectively determined extensionally and
must be supplied with extra information.

3.5 Abstract vs. Concrete Creation

Although it is always possible to create an object by
concretely enumerating its slots, such a low-level
expression is not acceptable when there is a more,
succinct abstract expression that will do. For example,
a point could be filed out as (1 xt 3. y t 4 .
parent* = traits point I) but3@4 is far
better. In addition to its conciseness and legibility, the
more abstract expression is much more robust in the
face of change to the implementation of points. For
example, 3@4 would still work if points were
reimplemented as polar, but the slot expression would
not.

Unfortunately, this choice between concrete and
abstract representation cannot be made by simply
inspecting the objects. Each object must be asked if it
is willing to supply an abstract representation and if so,
what that expression is. As in the case for mutability,
the abstract representation depends on the object’s
position in the inheritance hierarchy (its user-defined
abstract type). Accordingly the transporter sends each
object amessage, StoreStringIfFail:, to find
such an expression if it exists.

One last piece of information is needed because of
Self’s prototypical model. The prototype must always
be created concretely. If the prototypical point were
defined as 0 @ 0 in the source file, when reading the file
the “@” method would attempt to copy the proto-
typical point, which would not yet exist! Thus for Self,
there is also a message to identify the prototype that is
needed for storeStringIfFai1: and which
should not be created abstractly (called store-
StringNeeds). If the object cannot be created
abstractly, the transporter creates a new object slot-by-
slot. The availability and construction of data-type-
specific abstract initialization expressions is the last
piece of generally missing information about an object
that must be supplied by the programmer.

81

3.4 “Classes” in Self: Inheriting Structure

In a minimalist language, some information that has
been omitted from the language design may have to be
reintroduced as intentional information for saving a
program. Although the Self language includes
inheritance for sharing state and behavior, it does not
include any mechanism to inherit containers of state.
For example, the prototypical morph object (a
graphical element in our user interface framework)
contains many slots that every morph should have, and
some mechanism is needed to ensure that their
presence is propagated down to more specialized
morphs like the circleMorph.

In a class-based language, this need is met by a rule
ensuring that subclasses include any instance variables

t.#nq3k(~e : mxoq3k)
Crr m,r &A mqh
crJmple.~e:, Y’es xc
Copydoxccil paw&
chpydovm s&:i7.0r

defined in their superclasses. But in Self, a parent link
inherits only state and behavior, not information about
which slots are present. This omission keeps the Virtual
Machine simple and increases flexibility, since a child
can override an instance variable with a method.
Originally, we expected to share format information
with data-parents [Ungar], but never implemented
dynamic inheritance efficiently enough.

Instead, slots from one prototype are automatically
copied down to others by annotating the other objects
with the source of the copy (copy-down parent) and a
list of slots to omit from copying (Figure 8).

Figure 8. Copied-down slots: Two prototype objects are shown, morph, the general graphical object, and circleMorph,
a more specialized object to represent circles. Since the c i r cl eMo rp h prototype needs to include the same slots that are in
the morph prototype, it is annotated to include slots copied from morph. Although it cannot be seen on the printed page, the
copied slots am shown in pink on the screen.

The B a s i c MO r p h S t at e category of slots has been copied from those in mo r p h by first copying the morph and removing
all its submorphs (i.e. by sending it copyRemoveA11Morphs) and then copying the resultant slots, omitting parent,
prototype, rawBox and rawColor.Thetbree omittedslots, parent,prototype, and rawColor, havedifferent
contents than their counterparts in morph and so cannot be supported by the copy-down mechanism. The omitted slot raw-
Box is more interesting; circle morphs do not need this slot at all and so omit it. Most other object-oriented programming sys-
tems would not allow a subclass to avoid inheriting an instance variable.

a2

For each slot:

Refer to existin A gz’?’

1 File out an expression 1

Figure 9. How the transporter uses extra information to write out a slot: This flow-
chart clarifies the order in which the transporter queries the descriptive information in order
to make its decisions.

3.7 Summary: Missing Information
The Self 4.0 programming environment uses the copy-
down information to allow the programmer to use a Although a slot contains a simple reference to an

classical style when appropriate. For example, if the object, the transporter must make many decisions when

programmer adds a slot to morph the environment will saving that reference for transport into another

offer to add it to circleMorph, too. snapshot (Figure 9).

83

These decisions rely on information missing from the
original objects which must be supplied by the
programmer in annotations and extra attributes, listed
earlier in Table 1. It is surprising how much there is-
how much is taken for granted in conventional’
programs. In addition to a renewed appreciation for the
information in a conventional program, these items can
provide a checklist of capabilities for systems that
attempt to save directly constructed programs.

Table 2. Measurements of a typical Self 4.0 system

4. Status and Measurements

The Self transporter has been in daily use by the
members of the Self group for approximately two and a
half years, ever since we made the leap from editing
files to working in the environment. Before that point
two different approaches were explored, both more
BOSS-like (see section 5.2) than the final design. The
third version was the first to be widely used in our
group. Approximately two years ago, the transporter
was redesigned and implemented in its present form,
and has since been in constant use.

Table 2 presents some measurements of the Self
configuration most often used, and Figure 10 shows the
sizes of the modules. As one might expect, most
modules are fairly small, but the size distribution has a
long tail. When using the system, the seven seconds
required to save a typical module does not disrupt the
programmer because he can go on programming in the
meantime.+

number of slots per module

Figure 10. Module size distribution:
This graph shows the number of modules that contain
a given number of slots. For example, the first bar indi-
cates that 16 modules in the system contained from fif-
teen or fewer slots. (The last bar lumps together all the
modules that did not fit, from 18 1 to 657 slots. Many of
these contained automatically generated interfaces to
C libraries such as xlib).

5. Previous work

Many others have decided that classes and modules
should not coincide. The designers of Beta also chose
to separate modularity concerns from language design.
Their fragment system [Madsen] allows a system to be
decomposed into logically related, fine-grained pieces,
much as the Self transporter chops information up slot-
by-slot. The Beta fragment system is more versatile
than the transporter, because while the transporter
cannot dissect slots, a Beta fragment can be any
abstract syntax tree node. For example, a Beta
fragment could be a single line in a method. On the
other hand, the Beta system embodies a very classical
view about the nature of a program: a Beta program is a
collection of abstract conceptual patterns that describe
concrete phenomena without themselves partaking of
the concreteness of phenomena.

+ At this point, the reader may be wondering “What if the
programmer modifies a module while it is being transported in the
background? After all, Kirk always stood still.” We believe we have
put in enough synchronization so that the change either gets saved
or not. If not, the module will remain on the dirty list.

84

Wills’ Fresco system [Wills] partitioned Smalltalk 5.2 ParcPlace Binary Object Storage System
images into verifiable units of software. Although most (BOSS)
of his work was concerned with verification and lies
outside the scope of this paper, he did independently The Self transporter owes much of its inspiration to the
settle on a granularity that was finer than that of a class: ParcPlace Binary Object Storage System (BOSS)
a capsule contained a set of instance variables, [PamPlace], although BOSS was designed to move
methods, theorems, and type conformance proofs. In specialized data structures from world to world, and
order to model extensions to an object-oriented the Self transporter was designed to be the way that
program, Ossher and Harrison also adopted a fine, per- every program was saved. Therefore, the Self
slot granularity [Ossher], as has Bracha [Bracha]. transporter differs from BOSS in using a representation

Although there has been a great deal of research on
optimized for bootstrapping and textual change

persistent object systems, these systems either operate
merging, whereas BOSS’s representation is a denser

in a closed world of objects, or with objects created by
binary representation which can be parsed much more

conventional, descriptive programs. We are unaware of
efficiently. Nevertheless, as in Self, BOSS confronted

any work in this area that attempt to transport directly
the issues of whether or not to maintain identity,

constructed programs between worlds.
whether to initialize concretely or abstractly, and
whether to create or reference objects.

5.1 Moving Structures between Unlike Self, though, BOSS merged the identity and
Smalltalk Images initialization issues into one concept: “manifest

Vegdahl moved groups of objects from one Smalltalk
system to another [Vegdahl]. He discusses several
issues: “mapping unique objects,” which corresponds
to our “reference vs. object” discussion, “mapping
abstract objects” corresponding to our level of initial-
ization section, and “mapping redefined objects”,
which is his attempt at ensuring that class definitions
are identical so instance variables can be mapped by
position. Since the goal was to move specific data
structures and not programs, some of the issues dealt
with for the transporter did not arise. For example, the
decision to maintain identity was based on whether a
reference resided in a global variable.

objects,” and put the initialization-level policy into a
separate BinaryStoragePolicy class. The
standard policy detects references to objects or
associations in the Smalltalk dictionary and
associations visible by name to a method, classes and
metaclasses. This centralization may result in less
flexibility slot-by-slot than Self’s creator annotations,
but may result in more flexibility in that the same
objects could be stored with different policy classes.
Apparently, later versions of BOSS distributed some of
this policy with additional attributes; a per-class
method called representBinaryOn: could be
used to gain more flexibility, although it still merged
several issues into a single point of inflection [Steiger].

Although we tried to limit the number of annotations As compared to BOSS, the Self 4.0 transporter strives

for Self by experimenting with a number of these kinds for a greater separation of concerns, produces a repre-

of heuristics, in the end the requirement for the sentation that can be used for merging changes and

transporter to handle the entire system forced us adopt bootstrapping, and attempts to be more concrete and

the more flexible, annotation-based strategy. The Self comprehensible to a wider audience.
transporter’s annotations help decouple mechanism
from policy; policies can be implemented by 5.3 Interlisp
automatically setting them. Likewise, since its extra
attributes are used only for transport, they could be The Interlisp environment [Inter-lisp], [Medley], and
automatically set to implement the same sort of [Sybalsky], also had to save programs that were
policies that were bound in more tightly to Vegdahl’s directly constructed in a world of data (sometimes
work. called a “residential programming environment”). In

85

this case, data were represented as S-expressions and
Loops objects (built out of S-expressions). Unlike
Self’s annotations, Interlisp maintained a centralized
data structure to associate functions and variables with
modules. But like the Self environment, changed
modules were automatically added to a list of modules
to be saved, and if new entities had been added, the
user was queried for their module names.

It is very interesting that both systems arrived at some
of the same capabilities: both Self and Interlisp allowed
for a counter-factual, initial value to be stored, both
supported abstract, user-defined initializers, both
provide for identity preservation, although for Inter-lisp
a special option had to be used to preserve the identity
of non-Loops data that only worked within one
module. (Loops objects used unique identifiers to
preserve their identity.) In addition, Interlisp had a
feature not included in the Self transporter: some
variables could be saved with an option that would
prevent them from being changed if they were already
present in the destination world.

Self’s annotations, its tighter integration with the
programming environment (it was not so easy to go
from a variable to its storage directions in Interlisp as
in Self 4.0). and its more general support for identity
preservation are probably the biggest differences from
Interlisp. Most importantly in the context of this paper,
we are unaware of any coherent framework published
by creators of Interlisp for identifying the information
that was added for the sole purpose of transport. For
example, although Self uses separate protocols for
printing and for constructing abstract initializers for
transport, Interlisp used the same function, specializing
its behavior by testing a global variable.

6. Conclusions

The Self 4.0 system strives for a different kind of
programming experience, one based upon direct,
physical manipulations of concrete objects rather than
textual descriptions. Consequently, descriptions must
be regenerated in order to move “programs” from one
world of objects to another. The Self 4.0 transporter
performs this task, and has been in daily use for two
years by the Self group at Sun. It is far from perfect,
but performs satisfactorily.

Although many object-oriented programming systems
modularize programs by classes, we believe that a finer
granularity is needed. Accordingly, the Self transporter
labels each individual slot (used for both data and
methods in Self) with the name of the module it
belongs to. In this way a Self program can include
additions to standard “classes” such as adding a
method inherited by all strings, without having to
modify the baseline system. An incremental cache
efficiently maps modules back to sets of slots and
keeps track of modified modules that need to be saved.

While building the transporter, we gradually came to a
profound (and somewhat painful) realization: a directly
constructed, concrete program is not complete.
Although the objects comprising a program contain all
the information needed to run it, they lack information
needed to save and reload it into another world of
objects. For example, a program including a cache may
include a vector with seventeen elements in it that
should be saved as an empty vector. The missing
information, supplied in Self by annotations and extra
attributes, illuminates the distinction between the
minimal amount of information needed to run the
program and the program itself. Of course, how much
extra information is allowed by the framework is a
trade-off between simplicity and expressiveness. We
believe that the framework described in this paper
represents a good compromise.

Most of the extra information expresses intentions
about objects in slots. The programmer may intend for
a slot to be initialized with a given value regardless of
its current state, he may intend for a slot to be
initialized with a reference to a particular (global)
object regardless of its identity, he may intend for a slot
to be initialized to an object with a given value, he may
intend for an object to be represented by an abstract
expression, or he may be content with simply recon-
structing the object, slot-by-slot. In addition to these
four cases, there are two more required by the vagaries
of Self, but we believe that these basic four must be
covered by any system that attempts to reconstruct
programs from purely concrete, extensional
information.

86

7. Acknowledgments

Lars Bak helped convert Self source files for the first
version of the transporter, implemented the syntactic
changes for annotations in the virtual machine,
provided a lot of good advice on the design of the
transporter, and generally helped make it happen in the
time he was with the Self project. Urs HUlzle also
helped set the direction for the second incarnation. All
the past and present members of the Self group made
essential contributions to Self 4.0, and some of them,
Bay-Wei Chang, Mario Wolczko, John Maloney,
Randall B. Smith, Ole Agesen, and Ole Lehrmann
Madsen, even helped by reading early drafts of this
paper. I would also like to thank Peter Deutsch, Guy
Steele, and John Sybalsky for their help in under-
standing the related Interlisp work, and Chris Hibbert,
Richard Steiger, Michael Van De Vanter, and Mick
Jordan for their suggestions.

8. References

[Brachal

[Interlisp]

[Madsen]

[Medley]

[Ossher]

[ParcPlace]

[Smith 11

[Smith 21

[Steiger]

[Sybalsky]

[ParcPlace]

[Tichy]

FJngd

[Wills]

PN@W

Gilad Bracha, Gary Lindstrom, Modularity
meets Inheritance, 1.E.E.E 1992 International
Conference on Computer Languages, IEEE
Computer Society Press, Los Alamitos, CA,
1992, pp. 282-290.

Interlisp Reference Manual, Xerox PARC,
October, 1993.

Ole Lehrmann Madsen, Birger Meller-
Pedersen, Kristen Nygaard, Object-Oriented
Programming in the Beta Programming
Language, Addison-Wesley, 1993.

Medley Reference Manual, Volumes l-3, 1990,
Venue Inc., Oakland, CA.

Harold Ossher and William Harrison,
Combination of Inheritance Hierarchies,
OOPSLA’92, pp. 25-40.

ParcPlace Systems, Objectworks Reference
Guide, Smalltalk-80, Version 2.5, Chapter 36,
ParcPlace Systems, Sunnyvale, CA, 1989.

Randall B. Smith and David Ungar,
Programming as an Experience: The
Inspiration for Self. ECOOP’95, Springer
Verlag.

Randall B. Smith, John Maloney, and David
Ungw The Self-4.0 User Interface:
Manifesting a System-wide Vision of
Concreteness, Uniformity, and Flexibility.
OOPSLA’95.

Richard Steiger, private communication, 1995.

John Sybalsky, private communication, 1995.

Clemens A. Szyperski, Import is Not
Inheritance, Why We Need Both: Modules and
Classes, ECOOP’92, Springer-Verlag, pp. 19-
32.

Walter F. Tichy, RCS-A System for Version
Control, Software Practice and Experience,
15(3), July 1985, pp. 637-654.

David Ungar, Craig Chambers, Bay-Wei
Chang, and Urs H&le, Organizing Programs
Without Classes, Journal of Lisp and Symbolic
Computation, 4(3), Kluwer Academic
Publishers, June, 1991.

Alan Wills, Capsules and types in Fresco,
Program verification in Smalltalk.
ECOOP’91, Springer Verlag.

Steven R. Vegdahl, Moving Structures between
Smalltalk Images, OOPSLA’86, pp. 466-47 1.

87

