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1  Building virtual machines is hard

Building a high-performance virtual machine (VM) for an object-oriented language such
as Smalltalk or Java™ 2 is a major undertaking. The conventional approach has been to
hand-craft the entire VM in a systems language such as C or C++. The low-level access
afforded by such a language, compared to using a higher level language, enables an effi-
cient implementation of necessary components, such as a garbage collector, bytecode
interpreter, dynamic compiler, and object storage system. Access to the hardware is
important because many central data structures and algorithms must be tightly coded if the
resulting VM is to perform well and use memory efficiently. Details such as object layout,
inner loops of the garbage collector, and code sequences emitted by a dynamic compiler,
must all be well tuned for maximum performance. C and C++ serve the role of “structured
assembly language” in these cases, because the code emitted by optimizing C and C++
compilers is predictable and efficient. Performance of certain sections of code, such as the
message dispatch sequence, is so critical that in some circumstances even these languages
are not suitable, and hand-crafted machine code sequences are used to squeeze the last
drop of efficiency from the machine.

Hand-crafting a VM in this way is very laborious. The efficiency gained by using C or
C++ is at the cost of security; array accesses are not checked to see whether they are
within bounds, errors in memory management can lead to memory leaks or dangling
pointers, and unchecked type coercions can result in erroneous accesses. A high-perfor-
mance VM will contain many tens of thousands of lines of source code (e.g., the Self VM
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is over 100,000 lines of C++ and 3,000 lines of assembly code), and there will be many
global invariants involving the object storage system, garbage collection structures, com-
piled code conventions, and the like. 

A single slip can result in a bug which manifests itself as a hard-to-reproduce anomaly in
VM execution, the cause of the problem being far removed from the effect. The problem
of debugging is aggravated by history-sensitive state changes made for performance rea-
sons, such as adaptive optimizations [7] and changes of representation of run-time state
such as stack frames [4, 9]. For example, in an pre-release version of Self it was observed
that the system would run correctly for tens of minutes but thereafter input keystrokes
would be occasionally lost. After a significant number of days were spent debugging the
problem, it was found that a reference to an uninitialized structure was being passed on the
stack to a system input routine. Initially, the stack locations involved would happen to be
zero purely by chance, and the input routine would behave as expected. However, after
some minutes of execution the dynamic optimizer was re-optimizing the Self method that
called the input routine, and the optimized method would sometimes leave non-zero val-
ues in the locations subsequently occupied by the uninitialized structure, causing the input
routine to discard keystrokes. As this example shows, it is easy to introduce a subtle error,
which can be very difficult to find and fix, into a complex VM coded in a low-level lan-
guage. 

Changing a design decision in a VM can result in major changes requiring months of
effort, culminating in a significant bug tail. Another example taken from the Self VM is
the decision to alter the run-time system so that methods emitted by the primary, non-
inlining compiler are not customized (i.e., receiver-type specific). This apparently simple
change, initially estimated at two weeks’ effort, took several months to make, because the
assumption that a method was always created for a single receiver type permeated the
code of the VM in subtle and diverse ways.

In summary, building a high-performance VM typically requires several man-years of
effort by those experienced in the field (e.g., the Self VM, in its present form, is the result
of some 25 man-years of work), and results in a large, complex program, which is difficult
to modify and adapt.

1.1  Building Smalltalk and Java implementations in Self was easy

As part of other research [19, 2], we have built experimental implementations of Smalltalk
[5] and Java [6], by translation into Self [17]. Both of these implementations were rela-
tively easy to build (one and six man-months), and exhibit surprisingly good performance,
competitive with commercial, conventional VMs.

Several unique characteristics of the Self language, implementation and programming
environment made it possible to construct these implementations rapidly and with good
performance. In this paper we will describe these characteristics, outline the implementa-
tions, present performance data, and speculate on what these experiences suggest for
future VM construction.
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2  Unique characteristics of Self

Many properties of the Self language, implementation and programming environment
conspired to make it easy to construct the implementations of Smalltalk and Java. This
section describes the most important of these properties.

2.1  The Self language

Self [17] is a prototype-based object-oriented language. As in Smalltalk [5], all computa-
tion in Self involves objects; even integers and booleans are represented as objects. A Self
object is composed of a number of named slots. Each slot contains a reference to an
object. Slots are untyped, in that any slot can contain a reference to any kind of object.
Some slots contain references to method objects, which are executable. When a message
is sent to an object, the slot with the same name as the message is located within the
object. If the slot refers to a method, the method is executed. Otherwise, the object refer-
enced by the slot is returned.

Unlike most object-oriented languages, Self uses object-based inheritance, rather than
class-based inheritance. Any slots in an object can be designated as parent slots (by
appending an asterisk to their names). If a message is sent to that object and the name of
the message does not match the names of any of the slots in the object, then message
lookup will continue to the objects referenced by the parent slots.

In Self, all operations, even assignment and integer arithmetic, are performed as a result of
a message send. There is no invocation mechanism other than messaging.

Self does not include the notion of a class as a basic language concept. In Self, some
objects are created directly by the programmer, and thereafter cloned by the running pro-
gram. For example, the programmer may create an object with slots named x and y to rep-
resent a Cartesian point. This may be treated as a prototypical point, and cloned when the
program requires a new point object.

By combining prototypes and object-based inheritance it is possible to build object struc-
tures which are analogous to classes. For example, one object might play the role of the
class, containing all the behavior, i.e., methods, that its instances require. A prototypical
instance is cloned when a new instance of the class is required. The prototypical instance,
and its clones, inherit behavior from the class proxy via a parent link.

2.2  The Self implementation

The Self language presents a simple and pure model of computation based on objects. The
task of the Self Virtual Machine is to map programs in this model onto the underlying
hardware so as to make the program’s use of the hardware as efficient as possible. Given
the abstractness of the model, and the lack of low-level language features, this is no mean
feat. It is made all the more difficult by the requirement that Self programs execute in an
incremental programming environment, in which the programmer is free to halt the pro-
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gram at any time, inspect the state, modify any part of the program, and resume execution.
This precludes the use of any analysis or optimization technique that would adversely
affect the interaction between the programmer and the environment.

To reconcile these requirements, the Self VM uses adaptive optimization based on type
feedback [7]. When first executed, a Self method is translated into machine code in a fast
but naive way. The translation includes extra code to gather information about the execu-
tion profile and the actual objects being used in the execution. Once the VM has deter-
mined that a piece of code is being executed frequently, it retranslates one or more
methods, utilizing the information gathered earlier to guide optimizations.

In Self, an object is created by cloning another object. Objects that are derived in this way
from a single original object are treated by the VM as a clone family [3]. The sharable
parts of the members of a clone family are represented as a distinct entity by the VM,
known as a map. Maps describe the structure of objects, and contain the constant slots
(which will always have the same value for each object in the clone family). Because Self
does not allow method slots to be assigned, the methods of a clone family will be held in
the map, and hence the VM can treat the map as the implementation type for the clone
family. The programmer cannot detect the presence of maps in the system; they are purely
an implementation artifact. Maps allow the Self programmer to create prototypes and
clones as efficiently as instances of classes in a class-based language.

The most important optimization that is performed by the feedback-driven compiler is
method inlining. Given the ubiquitous use of message sending as an operation invocation
mechanism, dynamically bound calls are very frequent. Additionally, the Self language
promotes a style of programming in which factoring is maximized, resulting in small
methods. If compiled naively, programs would run slowly because they would spend all
their time in calls and returns. To eliminate the call overhead, the Self VM, when recom-
piling a frequently executed piece of code, uses the observed types of message receivers
(i.e., their maps) to inline method bodies. In most cases the compiler cannot be certain that
the observed types will always be the types actually used, so must guard the inlined body
with a type test. However, when inlining is performed repeatedly within a method based
on an assumed receiver type, a single type test can guard a large region of code which con-
tains many inlined message sends.

In the cases that the compiler chooses not to inline a send (because there is no single type
which dominates, or the method body is large and the space occupied would be too great)
then the instruction sequence used for message dispatch is chosen very carefully so as to
be as fast as possible. When a single receiver type is invoked at a message send site, an
inline cache [4] is used for dispatch. This adds only a few cycles of dispatch overhead to
the call in the case that the cache hits. When multiple types occur at the call site, a poly-
morphic inline cache is used [8].

To support a wide variety of programming styles and techniques, the Self object manage-
ment system is highly tuned to make object allocation, use and reclamation efficient. At
peak rate, Self 4.0 on an UltraSPARC™  1 with a 167MHz processor can allocate, initial-
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ize and reclaim 2 million 10-word objects in a second, an allocation and reclamation rate
of 75 Mbytes/sec.

All these properties of the implementation, namely efficient representation of prototypes,
profile-guided inlining, adaptive optimization, fast sends and efficient object manage-
ment, were key to the success of the implementations of Smalltalk and Java.

3  Implementing Smalltalk in Self

The structure of the Smalltalk implementation is sketched in Figure 1. The implementa-
tion includes a Smalltalk parser generated by the Self parser-generator, Mango [1], and a
translator which generates Self objects from the Smalltalk parse trees. The Self objects
mimic Smalltalk classes and methods. The Smalltalk implementation was written entirely
in Self, and did not require any changes to the Self Virtual Machine. 

Additionally, there is a rudimentary development environment, comprised of browsers,
workspaces, inspectors and a transcript. These were constructed in Self, and provide the
usual facilities of browsing, editing and running code (see Figure 2).

Because the design of Self was heavily influenced by Smalltalk, much of the translation
was straightforward and its description will be omitted. In particular, the semantics of
method invocation in Smalltalk are a subset of those provided by Self. However, the rep-

Smalltalk parser

Smalltalk source

parse trees

tree-walking translator

Self objects

Self Virtual Machine

Figure 1. The structure of the implementation of Smalltalk in Self
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resentation of instances, classes, metaclasses and their associated behaviors is of more
interest.

To capture these behaviors, we chose to represent each Smalltalk class by a class proxy.
The class proxy responds to messages in the same way as the original Smalltalk class it
mimics. The behavior of its instances is contained in a separate object (the instance
method repository), however, because an instance does not inherit its behavior from its
class. The instance method repository is referenced from the class, and is inherited by all
instances. 

A metaclass is structured analogously to a class, i.e., there is a metaclass proxy and a
method repository. The metaclass’s method repository serves as the inherited behavior of
the class. To support instance creation, this repository also contains a reference to a proto-
typical instance of the class, which is created when the class is defined, and updated when-
ever the structure-defining aspects of the class or any of its superclasses are changed. To
implement the Smalltalk ‘new’ primitive, we shallow-copy the prototypical instance.

Figure 3 shows the skeleton of a sample class, Date. The Self objects representing that
class and its metaclass are shown in Figure 4. The class variables of Date are in a sepa-
rate object, inherited by both the instance and class methods.

Figure 2. The Smalltalk-in-Self programming environment
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Each class and metaclass is thus represented by a group of six objects: the class proxy, the
metaclass proxy, the instance method repository, the class method repository, the class
variable repository, and the prototypical instance. Each group is connected to others by
inheritance links to mimic the Smalltalk class-metaclass hierarchies. 

class Date
superclass Object
instance variables days
instance methods
addDays: d

...
class methods
initialize

...
Figure 3. The (partial) definition of the Smalltalk class Date
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Figure 4. The Self objects representing class Date and an instance
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The classes and metaclasses at the core of a Smalltalk system, namely Object, Behav-
ior and Metaclass, are shown in Figure 5. Each class is an instance of its metaclass.
The metaclasses are instances of the class Metaclass, which is in turn an instance of its
metaclass. Smalltalk global variables are held in a global variable repository inherited by
the instance method repository of Object. This triad of classes was created ‘by hand’
using the Self interactive programming environment, using ‘arrow-dragging’ to build the
network of objects [15]. Once the appropriate subclass creation behavior was added, the
Smalltalk-to-Self translator could extend this hierarchy with new classes.

The Smalltalk class hierarchy is not connected to the hierarchies of standard Self objects,
so that no extraneous behavior is inherited. The only exceptions to this are that Smalltalk
Booleans, SmallIntegers and Floats are represented by Self booleans, smallInts
and floats, for efficiency. The result is that these objects possess not only the behavior
ascribed to them by their corresponding Smalltalk class definitions, but also the behavior
inherited from their Self traits,. which could lead to incorrect behavior should the extra
behavior be invoked inadvertently. This was deemed to be a minor problem; it could be
addressed by renaming the Self or Smalltalk methods in a systematic way so as to make it
impossible to invoke a Self method from Smalltalk-derived code.

Object

Behavior

Metaclass

prototypical
instance

method
repository

class or
metaclass
proxy

class variables

global
variables

parent link

instance-of link

class metaclass

Figure 5. How the basic classes are connected

Only parent links are
shown; instance-of links
are a special kind of 
parent link.
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The only serious problem encountered in the Smalltalk implementation was in the behav-
ior of blocks, which are the Smalltalk and Self form of closures. In Smalltalk, a block can
have arbitrary lifetime, even outliving the method context in which it was created. In the
Self 4.0 implementation, blocks cannot be invoked once their enclosing context is no
longer active. This property of Smalltalk blocks is used quite often in Smalltalk applica-
tions. To circumvent the problem, we devised a scheme involving Self objects which
mimic blocks, but to determine when to use this scheme we required the Smalltalk blocks
needing special treatment to be annotated in the source code [19]. While this solution is
not acceptable for a production-quality implementation of Smalltalk, it was sufficient for
our experimental implementation. It would be possible to extend the Self VM to support
blocks of arbitrary lifetime, but the months of effort required to do this were considered to
be beyond the scope of the Smalltalk implementation experiment.

In translating some of the syntactic features of Smalltalk not directly available in Self we
could take advantage of Self’s advanced compilation technology to make the translation
simple. For example, Smalltalk provides a multiple assignment facility, whereas Self does
not (in Self, assignment is achieved by a primitive method which returns the object con-
taining the slot assigned to, not the value assigned). In translating a Smalltalk statement
like 

a := b := c 
to Self we introduced a temporary variable, by using a block, thus: 

a: ([| :t | b: t. t] value: c). 
A simple implementation of this statement would be quite inefficient, binding and execut-
ing a block for each execution. However, the Self compiler inlines the block and its invo-
cation, producing code which is just as efficient as if the multiple assignment were directly
available.

3.1  Performance results

To assess the performance of Smalltalk code in this system, we took three medium-sized
benchmarks and measured their runtimes in this system and in ParcPlace’s ObjectWorks/
Smalltalk 4.1, running on the same hardware (a Sun SPARCstation™ -10).

In measuring Self programs, one has to be cognizant of Self’s dynamic optimization sys-
tem. This system instruments the initial version of a compiled method, and uses the mea-
surements to recompile hot spots with a much more sophisticated optimizing compiler.
Hence, the performance of a program is not constant, but improves asymptotically. The
results we quote here are based on the best of 20 runs, which gives the optimizing com-
piler a chance to generate code close to its optimum. ParcPlace Smalltalk is based on a
dynamic translator; the first run of a program will be slower while translation takes place,
but subsequent runs will be very similar (as was observed). We took the best of 20 runs,
just to make sure.

The selection of benchmarks was limited by incompatibilities in class libraries; our imple-
mentation had no graphics classes, and so any benchmark had to be entirely non-graphi-
cal. The benchmarks we used were:



Towards a Universal Implementation Substrate for Object-Oriented Languages 10

• Richards, an operating system simulator. This benchmark has been widely used in pre-
vious implementation experiments. It uses a very small number of library classes and
methods, and therefore is a reasonable measure of language performance, independent
of class library implementations. Richards shows the Self-based implementation of
Smalltalk in its best light, running in 410 ms, 2.7 times faster than ParcPlace Smalltalk.
Very little of the class library is used, and so the performance can be directly compared.

• Deltablue, a constraint solver [14], with two separate tests, the chain test and the pro-
jection test. The Self-based system runs the chain test in 830 ms, 1.4 times faster than
ParcPlace Smalltalk, and the projection test in 450 ms, 2.2 times faster.

• Diff, a program for computing longest common subsequences. Diff spends most of its
time in a single loop, doing binary-chopping searches down a list of sorted integers.
Although the Self compiler discovers this loop, and inlines all the blocks involved, in
Smalltalk this loop is written in terms of messages such as ifTrue: and whi-
leTrue:, which the ParcPlace Smalltalk compiler treats specially and inlines any-
way. The machine code generated for these loops is similar in quality in both systems,
and hence the times are similar: 7000ms for the Self-based system, 1.1 times faster than
ParcPlace Smalltalk. Both the Self-based system and ParcPlace Smalltalk suffer from
relatively poor machine code quality; a C version runs approximately 10 times faster,
the difference resulting from much tighter code in the inner loop.

4  Pep: running Java code on the Self VM

Java’s rapid growth to become one of the most popular object-oriented languages was not
been matched by the development of Java VMs. Consequently, even though the large
number of Java systems currently in use amply justifies the construction of a high-perfor-
mance Java VM, Java programmers today must make do with relatively underpowered
virtual machines. For example, JavaSoft™ ’s current JDK™  1.0.2 virtual machine is a
bytecode interpreter having no native code compilation, using indirect pointers (so-called
handles), and conservative garbage collection. In contrast, Smalltalk has had direct point-
ers, exact garbage collection, and “just-in-time” native compilation for more than a decade
[4, 16]. 

Upon observing the paucity of high-performance Java implementations, we set out to
determine the potential of Self-style dynamic optimization techniques for Java programs.
Having only limited resources available, we rejected the option of reimplementing Self’s
optimizer in the context of a Java VM. Instead, we built Pep, a Java to Self translator. By
translating Java class files (bytecodes) into Self objects and methods, Pep allows Java pro-
grams to execute on the Self VM where they benefit from the optimizing Self compiler.

Figure 6 shows a Java program’s path from source to execution using either the Java VM
(left branch) or Pep and the Self VM (right branch). The initial version of Pep translated
Java code into Self source code that would run on an unmodified Self VM. Although
avoiding VM changes was not a goal in itself, to get to run Java programs sooner we pre-
ferred “above the line” solutions requiring no VM changes. Our experience with this first
version of Pep made us revisit some of the design choices. We subsequently implemented
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a second version of Pep, this time admitting VM changes in carefully selected areas to
ensure better performance. These changes not only improved the performance of the Pep
system, but enhanced the Self VM’s ability to serve as a basis for general language imple-
mentation. The following subsections describe the initial version of Pep, the observations
that motivated the shift from the first to the second version, and how the second version
differs from the first.

4.1  Version 1: Generating pure Self source code

Consider again Figure 6. Pep maps Java class files to Self objects and methods. A Java
class file is a binary representation of a single class, generated from the source description
of the class by the javac bytecode compiler. The format of class files is described in detail
in [10], but essentially a class file contains the information necessary to execute programs
that use the class: the class’s name, its superclass’s name, a description of all fields and
methods defined by the class, and a so-called constant pool containing all numerical and
string constants used in the definition of the class. For each field, the class file specifies
the field’s name, type, and other attributes (such as whether the field is final and/or pri-
vate). For each method, the class file specifies the types of the method’s arguments and
result, bytecodes defining its behavior, and other attributes (such as whether the method is
synchronized and/or static).

javac (bytecode

Java source

.class files

Pep

Self objects

Self Virtual Machine

compiler)

(binary)

and methods

Java Virtual Machine

Figure 6. The Java interpreter and Pep executing a Java program

(bytecode interpreter)

(optimizing native compiler)
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Pep takes the information in a class file and generates two Self objects. The class object
contains a parent pointer to the superclass’s class object, translations of all instance and
static methods, all static fields, and a lock (for synchronized static methods). The proto-
type object contains a parent pointer to the class object (for inheriting the instance meth-
ods and access to the static variables), a slot for each instance field defined by the class,
and a lazily allocated lock object (for methods that synchronize on instances of the class).

The translation of the remaining Java constructs follows largely from the structure estab-
lished by the class and prototype objects. For example, Pep translates Java code that
instantiates a class (using new) into Self code that clones the class’s prototype object. Java
method calls are translated into Self message sends with some use of name mangling (to
handle Java’s compile-time method overloading based on argument types) and some use
of wrapper methods (to accomplish static binding for Java’s final calls and lock acquisi-
tion and release for synchronized methods). Two specific areas of the translation deserve
attention: primitive types and control flow. (More details on all aspects of the translation
can be found in [2].) 

4.1.1  Primitive types

Java has a rich set of built-in primitive types: signed integers of size 8, 16, 32, and 64 bits,
unsigned 16-bit unicode chars (integers), and floating point numbers of size 32 and 64
bits. Self, in contrast, has only 30-bit integers (smallInts) and floats (two bits being used
for tagging). To map Java’s built-in types onto Self’s types, we first settled on a represen-
tation and then defined the necessary operations. For all the integer types, the representa-
tion we chose was the following: if the value fits in 30 bits (signed), represent the value as
a Self smallInt, else represent it as a Self bigInt (bigInts are arbitrary-precision integers
defined in Self and represented using a vector of digits and a sign). Thus, for the 8- and
16-bit Java integers, the value would always fit in a Self smallInt and for the 32- and 64-
bit Java integers, some values would fit. Having defined the representation, we added
methods to the Self smallInt and bigInt objects to express all the operations on Java inte-
gers. For example, here’s the essence of the 32-bit integer addition method:

iadd: i = ( (self + i) trimTo32Bits ).

This method adds the receiver (a Self smallInt or bigInt) to the argument i, using Self’s
normal addition routine. Since addition in Self works with arbitrary precision, the result
can be outside the 32-bit range. Subsequently, the value is reduced to 32 bits of precision
by sending it the trimTo32Bits message. BigInts define this method as follows:

trimTo32Bits = (
| modulus = (1<<16)*(1<<16). sign = (1<<15)*(1<<16). |
"modulus is 2**32, sign is modules / 2"
r: (self >= 0 ifTrue: self False: [modulus + self]).
r: r % modulus.
r >= sign ifTrue: [r - modulus] False: r.

).
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SmallInts, being 30 bits only, use a much simpler and faster definition:

trimTo32Bits = ( self ).

The intent behind this smallInt/bigInt dual representation of Java integers is to be fast
when possible (i.e., in the 30-bit range), and fall back on the slower bigInt computation
when necessary. The Self compiler’s inlining is particularly crucial in the 30-bit case,
where inlining the above (empty) method eliminates any overhead, allowing the addition
to proceed at full speed. We gambled that in practice, few integers would be outside the
30-bit range.

Finally, for Java’s floats, we took a short-cut, mapping both the 32- and 64-bit types into
Self’s 30-bit floats. This choice, while acceptable for an experimental system since few of
our benchmark programs rely on the exact behavior of floats, would not suffice for a Java
implementation in widespread use. Indeed, we found that the impaired floats broke the
java.util.Random.nextDouble() method, causing it to always return NaN.

4.1.2  Control flow

At the source level, Java has structured control-flow, using constructs such as if-then-
else, while, for, break, continue, switch, and try-catch (for exception
handling). The bytecode compiler, however, turns the structured source code into byte-
codes with unstructured (goto-based) control flow. Since Self has no goto and no tail-call
elimination, Pep must recover structured control flow from the Java bytecodes before they
can be translated into Self code.

To recover the structured control flow for a method, Pep partitions the bytecodes into
basic blocks, constructs a control-flow graph, computes the depth-first tree to find loops
(back-edges), computes dominators (to ensure that the loops nest properly and have single
entries), and finally iterates a local pattern matching “reduction” operation on the control-
flow graph, in the process building equivalent structured control-flow statements (see [2]).
This process usually produces Self code that resembles the original Java code.

Figure 7 summarizes the most important steps in the translation of a Java method to Self
code. The Java method sum contains a for loop that sums all integers less than n. The
Java bytecode compiler, javac, translates it into the bytecodes shown below the source
code. Pep then constructs the control-flow graph, and subsequently turns it into Self
source code (for readability, we improved the indentation and abbreviated some of the
generated names). The loop in the generated code clearly parallels the original for loop,
although the loop counter i has been renamed to the generated name t_3 and the sum-
mand s has become t_2.

4.2  Version 2: Beyond pure Self code

The version of Pep described above was highly successful for some Java programs, run-
ning them up to an order of magnitude faster than the Java JDK 1.0.2 interpreter. For other
programs, however, the Pep-generated code had disappointing performance. For example,
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javac running on the JDK 1.0.2 interpreter could compile a particular 500 line Java pro-
gram in 9 seconds on a 50 MHz SPARCstation 10, but on Pep it took 140 seconds! What
went wrong?

4.2.1  Problem #1: Slow integer arithmetic

Upon closer examination, we found that javac makes extensive use of long integers (64-
bit integers), in many cases computing with values that cannot be represented as 30-bit
Self smallInts. In fact, javac uses 64-bit integers as bit vectors in its local flow analysis of
methods, using a bit for each local variable. In other words, javac violated our assumption
that most integers in practice would be of the fast 30-bit smallInt kind.

We briefly considered adding support for 32- and 64-bit untagged integers to the Self VM
in order to support Java’s integer types directly. However, such a fundamental change,
affecting the memory system at its very lowest level, was deemed to be too high an effort.
Instead, we took the second-best approach, adding support for “boxed” 32 and 64-bit inte-
gers represented as Self byteVectors and with primitives (C routines) to perform 32-bit
and 64-bit arithmetic. With boxed integers, arithmetic would still slow down after exceed-
ing the 30-bit range (e.g., each result exceeding 30 bits would require the allocation of a
byteVector), but not nearly as much as before. With boxed integers, javac’s performance
went from 140 seconds to just 13 seconds, an improvement of more than an order of mag-
nitude. This large speed up confirmed that our hypothesis was right, that slow integer
arithmetic was contributing to the slowness of javac. Moreover, it suggests that a further
performance gain may be possible, once we unbox 32- and 64-bit integers.

4.2.2  Problem #2: Hard-to-optimize control structures (blocks)

Slow integer arithmetic was not the only problem that impacted the performance of Pep-
generated code. Some of the control structures that Pep would generate when mapping the
unstructured jumps in Java bytecodes to structured control flow made such intricate use of

int sum(int n) {
int s = 0;
for (int i = 0; i < n; i++) {

s = s + i;
}
return s;

}

Method int sum(int)
0 iconst_0 10 istore_2
1 istore_2 11 iinc 3 1
2 iconst_0 14 iload_3
3 istore_3 15 iload_1
4 goto 14 16 if_icmplt 7
7 iload_2 19 iload_2
8 iload_3 20 ireturn
9 iadd

Java source code

Java bytecodes

sum_I: t_1 = ( | t_2. t_3 |
t_2: 0.
t_3: 0.
[|:exit_0|

(t_3 if_icmplt: t_1) ifTrue: [
t_2: (t_2 iadd: t_3).
t_3: (1 iadd: t_3)

] False: exit_0
] loopExit.
t_2.

)

Control-flow graph

Self source code

Figure 7. From Java source to Self source
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blocks that the Self compiler could not optimize them effectively. Consider this scenario:
If a tight loop, defined in terms of blocks, as is the style used in Self programming, can be
optimized to the point where no blocks remain in the native code, the loop will execute
optimally. However, should just one block remain uninlined, the loop may slow down sig-
nificantly because the Self VM must clone this block on each iteration of the loop. For
some of the poorly performing programs, we observed extremely high allocation rates,
suggesting that blocks remained uninlined. Besides loops, two other kinds of control
structures caused concern. First, Java’s switch statements were being translated into
sequential test sequences (if-then-else), because the Self language and VM has no multi-
way branch. Second, exception handlers had to store closures in the Self heap to maintain
a stack of active handlers, a certain way to defeat the compiler’s optimizer. But why
should blocks degrade performance when executing Java code, a language without clo-
sures? 

At this point, we undertook the major effort of adding branch bytecodes to the Self VM.
This work was almost complete after 4 man-months, attesting to the difficulty of imple-
menting and changing high-performance virtual machines. Presently, branch bytecodes
support efficient, closure-less translation of all Java control-structures except exception
handlers (for which Pep still emits code with blocks). Using the branch bytecodes, Pep can
translate Java bytecodes one by one directly into Self bytecodes, eliminating both the con-
trol-flow analysis and the need to generate Self source code. 

To illustrate the effects of the branch bytecodes, we measured a version of the Richards
benchmark that contains a switch statement in the inner loop. On a 167 MHz UltraSPARC
1, the benchmark takes 380 ms to execute when using no branches in the generated code.
Enabling branches reduces the run time to 320 ms.

5  Discussion

Contrasting the one man-month spent on the Smalltalk implementation with the six man-
months (or ten man-months, if counting the branch bytecode effort) spent on Pep, several
points should be noted. Smalltalk and Self are more similar than Java and Self, so it should
be expected that the Java system would require more work. However, the Pep project not
only took more time, but also produced a superior Self system for implementing other
object-oriented languages: better, although not perfect, 32- and 64-bit integer types; direct
support for branches in the bytecode set; and, not discussed in this paper, a process sched-
uler with multiple priorities; faster and more general locking; and elimination of some I/O
bottlenecks.

We have stressed the Self VM with three languages instead of one. It should come as no
surprise that this broader exposure has revealed areas of relative weakness and that elimi-
nating these weaknesses would further increase the value of the Self system as a general
implementation substrate. The most important areas are:

• Local code quality. The Smalltalk diff program shows the need for better local code
quality in the machine code generated by the Self compilers. The diff program’s perfor-
mance, even though all sends have been inlined, cannot compete with the C version.
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This observation was also confirmed by our Java experience. Java methods tend to be
larger than typical Self methods, raising the relative importance of traditional compiler
back-end techniques compared with the message invocation optimizations that the Self
compiler emphasizes. 

• Efficient access to primitive types implemented by the hardware (in particular 32- and
64-bit integers and floats).

• Life-time of blocks. Self blocks cannot be invoked after their enclosing method returns.
Lifting this restriction makes it easier to translate Smalltalk blocks that use this feature,
as well as translating other languages with closure-like constructs.

It would be interesting to broaden our experience by implementing other object-oriented
languages, such as Beta [11] and Eiffel [12], in this manner. This will undoubtedly expose
further deficiencies in the Self VM. Consider Beta for a moment. The top-down method
combinator (inner), the interactions of block structure and inheritance, and more simply
multiple return values might all warrant additional work on the Self VM. Even so, we feel
confident that many of the constructs in other languages will map to Self in a clean and
natural way and that overall, implementing a language on top of the Self system will be
significantly easier than implementing it directly from scratch.

6  Conclusions

We have described implementations of Smalltalk and Java which have respectable perfor-
mance and yet were relatively easy to construct in Self compared to traditional virtual
machine implementations in C and/or C++. These implementations were simple to build
because they utilize a fairly direct mapping of source language constructs to more primi-
tive elements available in Self (prototypical objects, slots, object-based inheritance, mes-
sages, etc.). The basic elements of Self semantics seem to form a minimal and yet general
and useful object language capable of describing (almost) all of the object behaviors of
other languages. Thus far we have only demonstrated this for two languages, Smalltalk
and Java, and it could be argued that Smalltalk is so much a part of Self’s ancestry that it
does not count. However, the connections between Java and Self are much more tenuous,
and yet the Java implementation was still easier to build by at least an order of magnitude
compared to conventional approaches. We encourage language designers and experiment-
ers to use the Self system in this way for their experiments.

Of course, it would be easy to provide a general implementation substrate for a wide vari-
ety of object-oriented languages if this substrate did not have to yield good performance.
Hence, to be useful for this purpose, the Self VM has to incorporate implementation tech-
niques which map combinations of these simple elements into efficient machine code and
data structures. We feel the key implementation techniques are:

• Adaptive optimization based on feedback. It is senseless to devote equal effort to com-
piling all parts of a program when all real programs spend most of their time in a small
part of the program. By concentrating the compilation effort on those parts that domi-
nate the profile, more sophisticated optimization techniques can be brought to bear. The



Towards a Universal Implementation Substrate for Object-Oriented Languages 17

Self VM shows the way in this respect, by performing aggressive inlining, but one can
envisage many conventional optimization techniques being applied to improve the
quality and footprint of the generated code.

• Efficient object representation through the use of maps. Using maps, the Self VM pro-
vides a simple, uniform object model where state and behavior can be located in the
most natural place while memory is still used efficiently.

• Aggressive inlining and fast sends. The performance-neutral decomposition and factor-
ing of code enabled by these optimizations are a great convenience for code generators
producing Self code: they can emit code at a higher level (examples: Pep generates
code that manipulates 32- and 64-bit integers; the implementation of Smalltalk’s multi-
ple assignments), yet efficiency will be preserved because the Self compiler inlines the
definitions of the higher level operations. Most other code generators (e.g., those that
produce assembly code) must cope with the complexity of emitting code at a fixed low
level (e.g., the hardware level) or pay a performance penalty. 

• High-speed object allocation, access and reclamation. Object allocation and access are
such fundamental operations – comparable to procedure call in Algol-based languages
– that it is essential to make them as cheap as possible. Of course, fast allocation must
also be complemented by efficient reclamation.

The problems that were encountered in implementing the Smalltalk and Java systems
arose from a lack of sufficiently general facilities in the Self VM, namely blocks with arbi-
trary lifetimes (Smalltalk), unboxed floats and long integers, and arbitrary control flow
within a method (Java). These facilities were not provided in the Self VM because they
were not required by the Self language. However, it is now clear that these and other cur-
rently absent features could be put to good use in the implementation of a number of lan-
guages.

This points the way to an implementation substrate, somewhat Self-like in nature, but con-
taining a rich enough set of primitives to support the implementation of a wide variety of
object-oriented languages. After all, it has been many years since static compilation tech-
nology became sufficiently well advanced that code generators could be produced which
supported a broad spectrum of conventional languages. Many production compilers have
back-end systems which produce code for C, C++, FORTRAN, Pascal and similar lan-
guages. Perhaps it is possible that a Self-like system could form the basis for a general
dynamic compilation system for a variety of object-oriented languages. This would enable
language designers to experiment more freely, basing their implementations on a flexible
but efficient substrate, and it would allow language implementors to devise techniques
which would apply to a multitude of source languages.
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