
1

Design and Implementation of Pep,
a Java™ Just-In-Time Translator

Ole Agesen

Sun Microsystems Laboratories
2 Elizabeth Drive

Chelmsford, MA 01824, U.S.A.
ole.agesen@sun.com

March 1997

Abstract. Java, a new object-oriented member of the C family of languages, has become popular in part
because it emphasizes portability. Portability is achieved by compiling programs to machine-independent
bytecodes that can be interpreted on a Java virtual machine. Unfortunately, interpreted performance does not
match native code performance. A just-in-time compiler can regain performance without sacrificing portability
by turning the bytecodes into native code at runtime.

This idea has a proven track record: Deutsch and Schiffman presented a dynamic Smalltalk compiler in 1984
[5], and the Self system currently sports a dynamic type-feedback based optimizing compiler [12]. To study
the performance potential of Java with this state-of-the-art optimization technology, we built Pep, a just-in-
time compiler from Java bytecodes to Self. Following translation by Pep, Java programs can execute on the
Self virtual machine and benefit from the optimizations performed by Self’s compiler.

We describe the design and implementation of Pep, focusing on concepts and trade-offs, but also compare per-
formance with the JDK 1.0.2 and 1.1 interpreters.

1 Introduction

Can Java be made fast enough to remain successful? For many applications, the current speed of Java suffices, but as
programmers push the language into the realm of larger customizable and extensible systems, success will depend
increasingly on high performance of Java’s object-oriented features. Objects must be lightweight to permit their ubiq-
uitous use and allow fine-grained decomposition of data; calls in general must be efficient to permit modularity of
code; virtual calls in particular must be efficient to encourage code reuse through subclassing and application frame-
work use.

For a decade, the Self system pursued these goals through extreme object-orientation [21]. In Self, even the smallest
units of data, such as integers and booleans, are objects, and all computation, even variable accesses and arithmetic,
take place through virtual calls. Despite this complete devotion to objects, Self code runs at up to half the speed of
optimized C, the high performance being achieved through dynamic profile-driven optimization.

We built Pep to study the applicability of Self’s optimization techniques to Java code. By translating Java bytecodes
to Self bytecodes, and executing these on the Self virtual machine, Pep provides insight into the nature of Java pro-
grams and the Self system’s performance on such code. This paper describes the design and implementation of Pep.
While we present some measurements, the main focus of the paper is conceptual. We include enough data to illustrate
the trade-offs, gains, and losses, but not so much data that it distracts from the concepts presented. Unless otherwise
noted, all measurements report real time on a lightly loaded 167 MHz UltraSPARC™ 1.

The second aim of this paper is broader. Using Pep as a case study, we hope to convey an understanding of the general
context in which Java just-in-time compilers operate. Pep’s high-level target language (Self) allows us to study
dynamic translation without being bogged down by details of assembly code that other just-in-time compilers gener-
ate (but this is also an inherent disadvantage: the unusual target language inevitably makes Pep different from other
just-in-time Java compilers). Finally, since Pep processes Java bytecodes in a different manner than a Java interpreter

Published inTAPOS, Theory and Practice of Object Systems 3(2), p. 127-155, 1997.

SML-E-96-49

TRADEMARKS. Sun, Sun Microsystems, the Sun Logo, Java, and picoJava are trademarks or registered trademarks of Sun Microsystems, Inc. in
the United States and other countries. SPARCstation and UltraSPARC are trademarks of SPARC International, Inc.

2

and has a radically different target language than other just-in-time compilers, Pep exposes some interesting, and per-
haps unforeseen, properties of the Java bytecode set.

The rest of this paper is organized as follows. Section 2 provides background information on Java and Self, emphasiz-
ing the properties that motivated the Pep project. Section 3 gives a high-level overview of Pep, focusing on where
Pep’s translation from Java bytecodes to Self bytecodes fits in the bigger picture. Section 4 describes macroscopic
aspects of the translation such as how classes, methods, and calls are translated. Subsequently, Section 5 zooms in on
the translation of expressions and statements. Section 6 explains techniques we have applied to reduce the translation
overhead and make programs start up faster. Section 7 studies the performance of Pep, and Section 8 describes the
current status. Section 9 offers final conclusions and directions for further work.

2 Background: Self and Java

The Self project began a decade ago, with the goal of developing a simpler yet more expressive successor to Small-
talk. In Self [21, 23], even the smallest units of data are objects, and all computation is performed through dynami-
cally-dispatched (virtual) messages. This extreme use of objects constitutes a difficult challenge for efficient
execution. To this end, the Self project has pioneered several optimization techniques that have eventually brought the
performance of Self up to half the speed of optimized C [12].

Java, an object-oriented member of the C family of languages, appeared recently. It departs from the C/C++ tradition
by enforcing type safety, providing automatic memory management, eliminating pointer arithmetic, featuring single
inheritance only, and emphasizing portability rather than maximal execution speed. Portability is achieved by compil-
ing Java programs into machine-independent bytecodes represented in a standard class file format [16]. The byte-
codes can be interpreted on aJava virtual machine(JVM) or translated into native code for faster execution [4].
Currently, interpretation is the most common way to execute Java programs. In this regard, Java implementations
resemble the P-code implementation of Pascal, known as UCSD Pascal, developed in the early eighties [17]. Then for
Pascal, as now for Java, the goal was portability, and the price of interpreting bytecodes rather than executing native
code was a slowdown of about an order of magnitude.

The side-by-side comparison of the Self and Java virtual machines in Table 1 reveals the greater maturity of the Self
system. This comparison leads us to ask the question: what would it be like to have a similarly advanced virtual
machine available for executing Java programs? Pep was built to provide an answer to this question without having to
re-implement the Self virtual machine techniques from scratch in the context of Java.

2.1 Relevant aspects of the Self language

This section briefly describes aspects of the Self language that Pep exploits in the translation. Readers with a detailed
knowledge of Self may safely skip this section. Readers who have not previously encountered Self or Smalltalk may
wish to supplement this section with a more complete description of Self such as [23].

Self 4.0 virtual machine Java virtual machine (JDK 1.0.2)
references direct pointers indirect pointers (“handles”)
execution dynamic optimizing compiler for efficiency,

non-optimizing compiler for responsiveness
interpretation

method calls fast; often inlined away through profile
directed optimizations

slow; a call/return to an empty method takes
990 ns on a 167 MHz UltraSPARC 1

performance up to half the speed of optimized C 5x-30x slower than optimized Ca

a. An inner loop written in assembler makes the recently released JDK 1.1 interpreter up to 3x faster. This
paper, however, primarily refers to the JDK 1.0.2 release, current at the time when Pep was built.

memory system exact, generational, copying GC;
allocation from contiguous area

conservative, mostly-compacting mark-
sweep GC; allocation from free list

Table 1. Comparison of Self and Java virtual machines.

3

Objects and inheritance.Unlike Java and most other object-oriented languages, Self has no classes. Instead, objects
are self-contained units, made up of named slots that can contain methods or references to other objects. Some of the
slots in objects may be designated parent slots. When an object receives a message for which it has no matching slot,
the lookup procedure will search the objects in the parent slots of the receiver and, if necessary, their parents, etc. This
way, state and methods alike can be inherited. Inherited state is shared between the child and parent, since there is
only one slot containing the state (the one in the parent): Self has no notion of copy-down slots.

Object creation. Class-based languages create objects by instantiating classes. Self creates objects by shallow-cloning
existing objects (prototypes). Since a clone of an object initially contains the same references in its slots as the origi-
nal, it will, in particular, inherit from the same parents. For example, apoint object may havex andy slots for hold-
ing the coordinates, and a parent slot for inheriting behavior shared by all points. Any clone of thepoint object will
therefore also inherit the point behavior, and, as one would expect, have its ownx andy slots.

Variable access. A characteristic feature of object-oriented languages is the dynamically-dispatched message (virtual
call). Self takes dynamic dispatch one step further, using it both to call methods and access variables. This allows
methods to override variables and vice versa. From the perspective of the caller, it is impossible to tell whether the
receiver object responds to a message by returning (or setting) the value of a variable or by executing a method.

Delegation.Smalltalk and Java, both of which use single inheritance, provide thesuper keyword to allow a method
M to invoke a method in the superclass of the class containingM. Self, having multiple inheritance, generalizes super
sends as follows: prefixing a send withresend causes the lookup to search all parents of the object defining the
methodM; prefixing a send with the name of a specific parent slot in the object containingM restricts the lookup to
the specified parent and its parents. We will refer to the latter kind of send as adirected resend. In the single-inherit-
ance case, when an object has only one parent slot,par , the directed resendpar.msg is equivalent to the undirected
resendresend.msg . As we shall see later, Pep makes intensive use of directed resends to translate Java’s statically-
bound calls.

Control flow and blocks. A block (or closure) is an object that contains a single method, whose code can refer to
names of variables from its lexically enclosing environment. Like alambda expression in Scheme, the code in the
block does not run until the block is evaluated. For example, a block can be created, passed as an argument, stored in
the heap, and later be evaluated. A Self block, like a Smalltalk block, can perform anon-local return, that is, a return
from the method in which it was lexically defined. A non-local return forces termination of any activations on the
stack between the current point and the point where the block was created. For example, if a methodM1 passes one of
its blocks to a methodM2, which evaluates the block, and the block does a non-local return, the block’s activation
record and those ofM2 andM1 are terminated.

Like Smalltalk, Self uses blocks to implement most control-flow structures, including conditional statements and
loops. For instance, conditional statements send the messageifTrue:False: to a receiver object, which istrue
or false , passing two block arguments. TheifTrue:False: method defined intrue evaluates the first block
whereas theifTrue:False: method infalse evaluates the second block. Self implements loops with the primi-
tive _Restart , which restarts the current method or block, i.e., it becomes the body of an infinite loop. To make a
finite loop, a non-local return is used to force termination.

3 Overview of Pep

Pep, like other Java execution engines, takes Java bytecodes as input. Certain limitations of Java bytecodes, mainly
their low-level control-flow specification discussed in Section 5.5, made us briefly consider basing Pep on source
code or abstract syntax trees. In the end, however, we rejected these alternatives because their use would prevent Pep
from operating in environments where only bytecodes are available; e.g., Pep would be unable to execute “applets”
transmitted as bytecodes over a network. Figure 1 summarizes the path from Java source code to a program execu-
tion. The figure shows the paths both for execution with Pep (bottom branch) and with a Java bytecode interpreter
(top branch). The Pep path involves more steps than the interpreter path. However, the additional steps are completely
encapsulated in Pep: a person interacting with a Java program execution under Pep will not be aware of these extra
steps, except for any timing effects they may have. Thus, Pep presents the same model of execution as does a Java
interpreter.

4

The next two sections describe in detail how Pep translates Java class files to executable Self code. Section 4
describes macroscopic aspects of the translation, including how Java classes are represented in Self (which has no
classes) and the translation of method calls. Section 5 narrows the scope to individual methods, explaining how Pep
translates the executable code inside a Java method to equivalent Self code.

4 Macrostructure of the translation: objects, classes, and methods

We illustrate the translation process by following a simple Java class, Primes.java, through the steps sketched in
Figure 1. Figure 2 shows the source code for the class. It defines two methods:isPrime tests whether a given inte-
ger is a prime number (returningtrue or false), andmain usesisPrime to print all primes between 2 and 50.
The class also defines an instance variable,maxPrime , that records the largest prime number found so far.

Javac, the Java source-to-bytecode compiler, translates a source file to a set of binary class files (one per class defined
in the source file). Figure 3 shows parts of the information contained in Primes.class:

 • the name of the superclass, herejava.lang.Object since no other superclass was specified in the definition
of classPrimes ,

 • a list of interfaces that the class implements (empty in thePrimes example),

 • a constant pool, which contains numerical constants, strings, and references to classes, methods, and fields,

Primes.java

execution

(source code)
Primes.class
(binary)

Self objects,
methods

execution

javac

Pep

Java VM

Self VM

Fig. 1. Pep compared with a Java interpreter.

class Primes {
int maxPrime = 2;

boolean isPrime(int p) {
if (p % 2 == 0) return p == 2;
for (int i = 3; i*i <= p; i += 2)

if (p % i == 0) return false;
maxPrime = p;
return true;

}

public static void main(String ign[]) {
Primes pr = new Primes();
for (int p = 2; p < 50; p++)

if (pr.isPrime(p)) System.out.print(p + " ");
System.out.println();

}
}

Fig. 2. Source code: Primes.java.

5

 • a description of each field defined in the class, and

 • a description, including bytecodes specifying the behavior, of each method defined in the class.

Pep translates each Java class file into two Self objects: an object defining behavior shared among all instances of the
class and a prototypical instance of the class. Although both are simply objects from a Self semantics point of view,
for convenience we refer to the former object as aclass objectand the latter as aprototype object. Figure 4 shows a
Java class hierarchy with four classes and the eight Self objects resulting from translating the classes. For example,
the class object for the classPrimes has the nameclass_Primes ; prototype objects are not assigned a name.
Arrows denote inheritance relationships. The prototype object, and thereby all clones of it, inherits from the class
object. In turn, the class object inherits from its superclass’s class object. The figure does not show it, but Pep inserts
a root object aboveclass_java_lang_Object . The root defines behavior common for all Java values (includ-
ing null , which is not a real object in Java but is in the Pep translation of a Java program).

A more detailed picture of the objects generated by Pep can be found in Figure 5, a screen dump from the Self pro-
gramming environment. The figure shows the class and prototype objects for classPrimes and the class object for
java.lang.Object . For readers who are not familiar with the Self programming environment, we should men-

constant pool:
numerical constants
strings
class/method ref’s

superclass: java.lang.Object

interfaces: <none>

field: maxPrime
type: int
initial value: 2
privacy: …
…

this-class: Primes

method: main
0 new #2 <Class Primes>
2 dup
4 invokespecial #7…
7 astore_1
8 iconst_2
9 istore_2

10 goto 49
…

method: isPrime
0 iload_1
1 iconst_2
2 irem
3 ifne 15
6 iload_1
7 iconst_2
8 if_icmpeq 13

11 iconst_0
12 ireturn
13 iconst_1
14 ireturn
15 iconst_3
16 istore 2
17 goto 31
…

Fig. 3. Binary Java class file: Primes.class.

class_java_lang_Object

class_java_lang_Exception

class_java_lang_Throwable class_Primes

class object

prototype object

inheritance

java.lang.Object

java.lang.Throwable Primes

java.lang.Exception

Fig. 4. Java class hierarchy (left) and the Self objects that Pep translates it into (right).

6

tion that some of the objects’ slots in the figure are hidden behind closed outliners. For example, none of the methods
defined inclass_java_lang_Object are visible. In a live environment, they could be exposed by clicking on
the black triangular “open category” button at the left edge of the object.

4.1 Compiling method calls

Java employs a mixture of compile-time and run-time method lookup [10]. The compile-time lookup determines a
method descriptorfor the invoked method. The descriptor consists of the name of the method and types of its argu-
ments (the type of the result does not affect lookup). Essentially, the compile-time lookup deals with method over-
loading, i.e., cases where several methods have the same name but different types and/or numbers of arguments. The
run-time lookup subsequently searches for a matching method descriptor, starting in a certain class and progressing
along the superclass chain until a match is found. The JVM specification [16] states that the method descriptor is
always found in the immediate class and, hence, no searching of superclasses takes place. This property, in fact, is an
implementation aspect of Sun’s JVM: at class resolution time, it builds amethod tableby copying the method table of
the superclass and then appending the class’ own method descriptors. Since the superclass’ method table is a prefix of
the class’ method table, traversal of the superclass chain is unnecessary. C++ vtables use the same prefix layout [22].

The Java bytecode set contains four invocation bytecodes; see Table 2. The bytecodes differ in the class that the run-
time lookup starts in, how the lookup is performed and how it can be optimized, and the kind of method invoked. We
explain these differences briefly, present an example of the use of the bytecodes, and then describe how Pep translates
them; for a complete description of the bytecodes, see [16].

For bothinvokevirtual andinvokeinterface , the run-time lookup starts in the class of the actual receiver
object. The former bytecode is used when the compiler knows a superclass of the actual receiver class, i.e., when the
compile-time type of the receiver is a class type. In this case, the invoked method is always found at the same index in
the actual receiver’s method table, allowing substitution of a fast indexing operation for the method lookup (the Sun
JVM performs this optimization by rewriting the bytecode into a “quick” variant; see [16]). Theinvokeinter-
face bytecode is used when the compile-time type of the receiver is an interface type. In this case, since the possible
receiver objects need not have a common superclass that declares the invoked method, the lookup cannot be opti-
mized as aggressively. It is fair to compareinvokevirtual with C++ vtables andinvokeinterface with
Smalltalk method lookup.

Fig. 5. Self objects produced by Pep when translating classPrimes .

7

For invokestatic , which invokes a static (class) method, the run-time “lookup” starts in a class specified in the
bytecode. We write “lookup” because no searching will actually take place: if a static method is inherited, the com-
pile-time lookup will determine the exact class defining the method and specify this class in the bytecode.

Finally, invokespecial is used in situations where the invoked method can be uniquely determined at compile
time, i.e., the invocation can be statically bound (indeed, prior to release 1.0.2, this bytecode had the nameinvo-
kenonvirtual). The bytecode is used in three different situations. First, since a private method can be invoked
only from methods in the same class that declares the private method, a private method call can be statically bound
and compiled into aninvokespecial bytecode. Second, when compiling an expression likenew Primes() ,
the new object’s initializer method (<init>) must be invoked. Since the new objects’ class is a compile-time con-
stant, the initializer can be called with aninvokespecial bytecode. Third, when a call specifiessuper as the
receiver, it is compiled into aninvokespecial bytecode. At run-time, the JVM can tell that the instruction imple-
ments asuper call (the method is not private and does not have the name<init >). The JVM, then, performs the
lookup in the method table of the superclass of the class containing the currently executing method.

We explained how the JDK interpreter replaces theinvokevirtual bytecode at run-time with a quick version.
Similar optimizations apply to the other invocation bytecodes [16]. A just-in-time compiler can ignore these optimi-
zations if it compiles methods before they have been interpreted, but otherwise must be capable of translating both the
regular invocation bytecodes and their quick counterparts. Pep does not need to handle quick bytecodes since no
rewriting of bytecodes take place in the Pep system.

Here is a small example to illustrate Java’s compile-time/run-time lookup process.

class Invoke {
private int first(int j) { return j % 1000; }
int second(int j) { return j % 1000; }
void test() { first(10000); second(20000); }

}

The classInvoke defines three methods:test , first andsecond . The test method calls each of the other
methods. Figure 6 shows the bytecodes fortest . Sincefirst is private, the call is translated into the statically-
boundinvokespecial bytecode. The call’s method descriptor isInvoke.first(I)I : the method is declared
in the classInvoke , has namefirst , takes oneI nteger argument (and returns anI nteger, although this fact is not
used during method lookup). The call tosecond cannot be statically bound because the method may be overridden
in subclasses ofInvoke . It is therefore translated into aninvokevirtual bytecode.

bytecode name
class searched for matching
method descriptor use in source terms

invokevirtual receiver object’s class regular method invocation (like C++ virtual method)
invokeinterface receiver object’s class invoke method through interface (like Smalltalk method)
invokestatic statically specified class invoke a class method (static method)
invokespecial statically specified class private method invocation; object initialization (<init>);

method invocations usingsuper receiver;

Table 2. The four kinds of method invocation defined by Java bytecodes.

PC instruction
0 aload_0
1 sipush 10000
4 invokespecial #5 <Method Invoke.first(I)I>
7 pop
8 aload_0
9 sipush 20000

12 invokevirtual #4 <Method Invoke.second(I)I>
15 pop
16 return

Fig. 6. Bytecodes for thetest method.

8

Self emphasizes run-time lookup to a much higher degree than Java and has no separate compile-time lookup phase.
To achieve efficient execution of Java programs, Pep must avoid overhead in the translated code implementing
method calls. For example, executing Self code to “interpret” Java calls would be inefficient. We have devised a solu-
tion that allows Pep to compile a Java call directly into a Self call. This gives the Self compiler a better chance of opti-
mizing and inlining the call than if a less direct translation was used. The solution involves two parts: use of name
mangling to resolve overloading and use of delegation to make the lookup start in the appropriate place.

Resolving overloading. Consider a Java method call with the method descriptorN(A1, A2, …, An); i.e., the method
name isN and it takes arguments of typesA1, A2, …, An. For this call to match a method, both the nameN and argu-
ment typesAi must match. In Self, as in Smalltalk, the types of arguments play no role during lookup. The only
requirement is that the method names (a.k.a.selectors) match. To implement the stricter Java matching rules, Pep
folds the Java argument types into the Self selector. The Java method descriptorN(A1, A2, …, An) becomes the Self
selectorN_A1:A2:…An:. Accordingly, a method call and a method definition have matching names in the Self domain
if and only if they have matching names and types in the Java domain. A few concrete examples should make this
idea clear; see Table 3. (The extra “L” before class names originates from Java’s encoding of class names; it is non-
essential and harmless to the present discussion.) The last example in the table shows how array types are handled by
addingArray_ in front of the class name as many times as the array type has dimensions.

Starting the lookup in the right place.For theinvokevirtual and invokeinterface bytecodes, the lookup
starts in the class of the receiver object. Since this starting place is the default one in Self, Pep simply translates these
bytecodes into regular dynamically-dispatched sends to the receiver object. Pep translatesinvokestatic into a
dynamically-dispatched send to the class object specified in the bytecode (recall that the class object is just a regular
Self object). Thus, a static method executes with a class object as the receiver and therefore can access static variables
defined in the class, but not instance variables. For theinvokespecial bytecode, recall from the above explana-
tion that we need to invoke a method from a statically specified class. This case requires the most work to translate,
simply because Self emphasizes dynamically-bound calls to an extreme degree.

We use Self’s directed resend (delegation) feature to force a lookup to start in a specified class. In typical Self pro-
gramming, a directed resend is used to invoke an overridden method in a specific parent object. However, directed
resends can also delegate through non-parent slots. Pep exploits this property, giving each class object a constant slot,
this_class , that contains the class object itself. Methods defined in the class can perform statically-bound calls to
other methods in the class by delegating through the (non-parent)this_class . To allow methods defined in other
classes to perform statically-bound calls, we add an externally accessible wrapper method that performs the delega-
tion throughthis_class . For example, consider the classPrimes . In addition to translating and installing the
isPrime_I: method in the class object, Pep generates this wrapper to obtain statically-bound calls:

a_Primes_isPrime_I: t_1 = (this_class.isPrime_I: t_1).

The name of the wrapper is the concatenation of the class name and the method name (in this case, an additional “a_”
is prepended to prevent the first letter from being upper-case since Self rejects method names that begin with an
upper-case letter). In Figure 7, the categorynon-virtualscontains all the wrappers for the classPrimes . By unique-
ness of the wrapper method names, a statically-bound call to a method can be replaced by a dynamically-bound call
to the wrapper. Hence, theinvokespecial bytecode can be translated easily.

The use of delegation throughthis_class can be compared with thethis andsuper keywords in Java. Con-
sider the classesA, B, andC, whereC extendsB andB extendsA. If a methodm in classB contains a call of the form
this.foo() , the lookup starts in the dynamic class of the receiver (which could beB or C). If m contains the call
super.foo() , it will always invoke thefoo method inA, regardless of the class of the current receiver. Finally,
turning to the Pep generated objects, if the class object produced fromB contains the callthis_class.foo , it
invokes thefoo method in classB, regardless of the class of the current receiver.

Java method N(A1, A2, …, An) Self selector N_A1:A2:…An:
ensureCapacity(int) ensureCapacity_I:

indexOf(java.lang.Object) indexOf_Ljava_lang_Object:

setElementAt(java.lang.Object,int) setElementAt_Ljava_lang_Object:I:

copyInto(java.lang.Object []) copyInto_Array_Ljava_lang_Object:

Table 3. Selected methods from the classjava.util.Vector and their mapping to Self.

9

4.2 Synchronized methods

We have explained how Pep uses wrapper methods to implement statically bound calls in Self. Java’s synchronized
methods are also translated using wrapper methods. A synchronized method must acquire the lock on the receiver
object before it starts executing and release the lock once execution completes. Pep implements this behavior by
introducing a wrapper method between the caller and the actual code of a synchronized method. The wrapper locks
and unlocks the object, taking care to ensure that the lock is released even if an exception abruptly terminates the exe-
cution of the synchronized method. Figure 8 shows examples of synchronized methods: the methodssetSeed ,
next , andnextGaussian in classjava.util.Random . The wrapper has the name that the translated method
would have had, had it not been synchronized. The wrapper performs the synchronization and invokes the non-syn-
chronized version of the method. All wrappers have the same form as the one highlighted in Figure 8, invoking a
methodsync_do: with a block that calls the wrapped method.

To give the full picture, consider where the wrappers for implementing statically-bound calls fit in. A statically-bound
call to the synchronizednextGaussian method will result in this call path in the translated code:

… → java_util_Random_nextGaussian → nextGaussian → sync_do: → nosync_nextGaussian .

4.3 Fields

A class in Java has all the fields of its superclass (recursively) in addition to the ones defined in the class itself.
Accordingly, when generating the prototype object for a class, Pep collects field definitions from the entire chain of
superclasses from that class up to the classjava.lang.Object .

In Java, as in C++, field accesses are statically bound and fields cannot override methods or vice versa. A subclass can
even define a method with the same name as a field in one of its superclasses. Since Self uses dynamically-dispatched
sends to access both fields and methods, if a child object defines a method with the same name as a field in a parent
object, the code in the parent would access the method instead of the field. The first step in translating fields from Java
to Self, therefore, is to make field names distinct from method names. Pep appends “_” to field names to achieve this
separation. (Pep employs a simple trick to ensure that names with a single underscore cannot clash with a name from
a Java program: whenever Pep translates a name found in a Java program, underscores are “doubled.” Thus,apple_
becomesapple__ , and therefore cannot clash with the mangled name of a Java field.)

A perhaps surprising feature of Java is the ability to define a field with the same name in a class and its superclass.
Instances of the class will then have two fields with the given name. Methods defined in the superclass will assign to
and read the field defined there. Methods defined in the class will assign to and read the field defined in the class itself
and ignore the definition in the superclass. To translate this behavior into Self, which does not allow a single object to
contain multiple fields with the same name, Pep mangles field names by prepending the name of the class declaring

Fig. 7. Pep uses wrapper methods and delegation to implement statically bound calls in Self.

10

the field. For example, themaxPrime field in classPrimes is translated asa_Primes_maxPrime_ (again, the
initial “a_” is necessary because Self does not permit names to start with an upper-case letter).

With field names separated from method names by appending “_” and made unique by preprending class names, Pep
can straightforwardly compile field reads and writes into dynamically-dispatched sends.

4.4 Summary of the macrostructure of the translation

This concludes our description of the high-level aspects of Pep’s translation. Table 4 summarizes the most important
aspects of the mapping. Next, we consider the details of translating the executable code found inside methods.

Java Self
class 2 objects: prototype and class
superclass parent slot in class object
unsynchronized method 2 methods: virtual and non-virtual
synchronized method 3 methods: virtual, non-virtual and unsynchronized
non-static field slot in prototype object
static field slot in class object
object creation (new) clone prototype object
method call method call

Table 4. Summary of how Pep maps Java constructs to Self constructs.

Fig. 8. Pep uses wrapper methods to implement synchronized methods.

11

5 Microstructure of the translation: expressions and statements

In this section, we focus on the translation of the bytecodes that define the behavior of methods. Both Java and Self
define behavior using bytecodes that conceptually execute on stack machines. However, the bytecode sets are quite
different. The Java bytecodes are described in detail in [16]. There are many of them because many operations on
primitive data types (integers, floats) have their own bytecodes to allow fast interpretation. For example, the bytecode
for adding two 32 bit integers is different from the bytecode for adding two 64 bit integers. Java bytecodes implement
control-flow using branches (unconditional, conditional, and switched), have direct support for Java’s exception and
synchronization schemes, and support all of Java’s primitive types directly (with the exception of theboolean type,
which javac compiles into abyte representation). In contrast, Self’s bytecodes were designed for compactness
rather than fast interpretation (Self has always been compiled), provide higher-level control flow primitives in the
form of blocks and non-local returns, have no direct support for exceptions or synchronization, and support only 30
bit integers and floats as primitive types. Table 5 gives a side by side comparison of the two bytecode sets.

These differences in the bytecode sets must be bridged by Pep. The following subsections describe how Pep handles
each area.

5.1 Primitive types and their operations

The JVM implements a richer set of primitive types than the Self virtual machine. Java’s virtual machine provides
signed integers of size 8 (byte), 16 (short), 32 (int), and 64 (long) bits, unsigned 16 bit integers (unicode characters),
and floating point numbers of size 32 (float) and 64 (double) bits. The Self virtual machine, reserving two bits for
tags, implements only 30 bit signed integers and 30 bit floats. However, unlike Java’s primitive types, the Self primi-
tive types areobjects: virtual calls can dispatch on integers just as they can dispatch on any other kind of object. Thus,
Self methods can be polymorphic over primitive objects and “real” objects alike. We use this fact to implement, in
Self, data-types that provide the exact semantics of Java’s primitive types.

Representation of Java integers.Java integers whosevalues(not bit size) fit in 30 bits, are represented using Self inte-
gers. Some 32 and 64 bit integers cannot be represented in 30 bits. For these values, Pep resorts to a “boxed” repre-
sentation. This dual representation avoids the boxing overhead for the more common small numerical values. Java’s 8
and 16 bit integers never need to “overflow” to an alternative boxed representation. Here’s an example of how the
dual representation is implemented. Java’s integer addition, in the case when both integers are represented as 30 bit
Self integers, is implemented by this method:

iadd: i = (
self _IntAdd: i IfFail: [int32 add: self And: i]

).

The iadd: method is defined in a common parent object of all integer objects in Self. The method attempts to add
the receiverself to its argumenti using the primitive_IntAdd:IfFail: . The primitive operation succeeds if

Java bytecodes Self bytecodes section
design goal fast interpretation minimality, compactness
number of bytecodes 200 (shown in full in appendix) 7 (described in detail in [2])
primitive types 8, 16, 32, 64 bit integers;

32, 64 bit floats; 16 bit chars
30 bit integers (2 tag bits);
30 bit floats

5.1

operations on primitive
types, e.g., integer add

each operation has its own byte-
code

done by calling “primitive”
methods

5.1

expression stack opera-
tions

several:dup , dup_x1 , dup_x2 ,
dup2 , …, swap, pop

none 5.2

exception handling direct support: exception tables,
athrow , jsr andret bytecodes

minimal: can trap non-local
return through activation frame

5.3

synchronization direct support:monitorenter
andmonitorexit bytecodes

not a primitive concept 5.4

control flow jump based: goto, if-goto, switch-
goto

structured: blocks, restart cur-
rent method, non-local return

5.5

Table 5. Comparison of Java and Self bytecode sets.

12

and only if bothself andi are 30 bit integers and their sum does not exceed 30 bits. If the primitive fails, the block
following the keywordIfFail: will invoke a more general addition method,add: , defined in the objectint32 .
Theadd: method converts the two operands from 30 to 32 bit integers and computes their sum with 32 bits of preci-
sion.

We tried two different boxed representations for large integer values. The earliest version of Pep used Self’s arbitrary-
precision integers. However, it soon became clear that performing arbitrary precision arithmetic followed by trunca-
tion to 32 or 64 bits was too slow for the relatively frequent use of 32 and 64 bit values in some Java programs. Con-
sider javac. It uses bit-vector operations to flow analyze the program it is compiling. Each bit-vector is represented as
a long (i.e., it has 64 bits, indexed from 0 to 63). Thus, many integer values exceed 30 bits. When Pep used Self’s
arbitrary-precision integers, javac took 140 seconds to compile a version of the Richards benchmark whereas on the
JDK 1.0.2 interpreter javac took just 9 seconds (measured on a 50 MHz SPARCStation™ 10). Subsequently, we
changed Pep to use a fixed-size representation for boxed integers. We chose bytevectors of length 4 to represent large
magnitude 32 bit Java integers and bytevectors of length 8 to represent the 64 bit integers. After this change, Pep
could run javac on Richards in 13 seconds, a speed-up of more than an order of magnitude. We suspect that even with
the more efficient boxed representation, the overhead of doing 32/64 bit arithmetic is still significant. An extreme
example is a program that executes these two emptyfor loops:

loop 1: for (int i = 0; i < 1000000; i++);
loop 2: for (int i = 1000000000; i < 1001000000; i++);

Table 6 shows, as one would expect, that JDK 1.0.2 executes both loops in the same time. Pep, however, loses a factor
of nearly 200 when the large numbers in loop 2 forces use of boxed integers. From being 16 times faster than JDK
1.0.2 on loop 1, Pep’s performance degrades to being 12 times slower on loop 2.

Representation of Java floating point numbers.The current version of Pep takes a shortcut: it represents Java’s floats
and doubles using Self’s 30 bit floats. Self’s floats have the same precision as Java’s 32 bit floats, but reduced range
(the two tag bits have been taken out of the exponent). While this shortcut allows Pep to run most Java programs,
some programs fail because of the restricted floats. For example, the methodnextDouble in java.util.Ran-
dom always returns NaN1 because the long-to-double cast produces a floating point value outside the limited range
available in Self.

public double nextDouble() {
long l = ((long)(next(26)) << 27) + next(27);
return l / (double)(1L << 53);

}

The next step in evolving Pep from an experimental system to a practical system would be to add support for unboxed
32/64 bit integers and 32/64 bit floats to the Self virtual machine. This addition would require work on the memory
system because tag bits can no longer be assumed, so it was beyond the scope of the initial Pep system.

5.2 Expression stack operations

The JVM provides a rich set of bytecodes for manipulating the expression stack. These bytecodes view the stack as
consisting of untyped 32 bit words. For example, thedup bytecode will duplicate the top-most word on the stack,
regardless of whether it is an integer, float, or a pointer. Thedup bytecode comes in several variants for duplicating
one or two words and for placing the duplicated words at various depths in the stack. Likewise, Java provides two pop
bytecodes:pop removes one word from the top of the stack andpop2 removes two. Finally,swap comes only in
one version: swap the top two words on the stack.

JDK 1.0.2 Pep
loop 1 600 ms 37 ms
loop 2 600 ms 7,200 ms

Table 6. Boxed integers slow down Pep on loop 2.

1. NaN: not a number; the result of a float computation which has over- or under-flowed to produce an indeterminate value.

13

Although the stack manipulation bytecodes view the stack as consisting of untyped 32 bit words, Java does impose
some type-like restrictions on their use. For example, usingswap on two words constituting a double on the top of
the stack is illegal. Likewise, swapping a pointer on the top of the stack with one of the words in a long immediately
below the pointer is illegal, as is usingpop to discard half of a long on the top of the stack. However, usingpop2 to
discard two pointers is legal. As a rule of thumb, the stack manipulation bytecodes must never compromise the integ-
rity of 64 bit values on the stack, even though they view the stack as consisting of untyped 32 bit words.

For any bytecode in a method, including the untyped stack manipulation bytecodes, Gosling explains in [9] that it is
always possible to perform an abstract interpretation of the method to determine the type of the word(s) that the byte-
code manipulates. The fact that this type is unique, no matter which path to the bytecode flow of control takes, is an
invariant established by javac and verifiable by this abstract interpretation. In fact, security concerns require that this
property is verified prior to execution.

Self, in contrast to Java, contains no bytecodes for manipulating the expression stack. Instead, Pep generates
sequences of other bytecodes to achieve the effect of the Java stack manipulation bytecodes. For example, to pop the
top-most value, Pep would invoke a binary method that always returns its first argument (the method was called “; ”
so4;5 would evaluate to4). Here, Pep would rely on Self’s optimizing compiler to inline away the actual call to the
“ ; ” method. To swap and duplicate values on the stack, Pep would transfer the values into local variables and then
push them back onto the stack in the order and multiplicity required. Later, we added a pop bytecode to the Self vir-
tual machine, allowing some of these operations to be performed more directly. (The pop bytecode becamenecessary
when branches were added to Self’s bytecode set; see Section 5.5.2. The reason is that branches introduce the possi-
bility that control-flow paths can meet with different expression stack heights, so one or more pops must be inserted
along one of the paths.)

The translation of Java’s stack manipulation bytecodes is straightforward in most cases. However, there is one impor-
tant exception caused by the lack of explicit type information in the bytecodes. Consider thepop2 bytecode, which
may be used either to pop two single-word values (such as integers or references) or one double-word value (a double
or a long). In the former case, Pep would need to generate code that popstwo values from the Self expression stack.
In the latter case, it would need to generate code that popsonevalue off the Self expression stack since, in the trans-
lated code, a double is a single object. Thus, in order to translate a method that contains apop2 bytecode (or any of
the dup2 variants), Pep must perform Gosling’s abstract interpretation to determine whether to generate code that
pops one or two Self objects off the stack.

It is unfortunate that the explicit typing of Java’s other bytecodes does not extend to the stack manipulation byte-
codes. Hadpop2 and thedup2 variants been reserved exclusively for popping and duplicating longs and doubles, no
analysis or abstract interpretation of methods would ever be needed. Java bytecodes could be translated one by one
without ever considering the method as a whole. Instead, as things stand, Pep must do abstract interpretation of meth-
ods containingpop2 and dup2 bytecodes to extract one bit of information for each such bytecode: does it pop
(duplicate) one double-word or two single-words?

Although we have not done specific measurements to determine the cost of this abstract interpretation and the latency
it incurs on program start-up, its complexity is comparable to that of the bytecode verifier [16]. Indeed, in a produc-
tion system, it would be possible, and appropriate, to extract the necessary information aboutpop2 bytecodes from
the verifier itself.

5.3 Exception handling

In source terms, a Java exception handler has the following form:

try {
… code that may cause an exception to occur …

} catch(java.lang.ArithmeticException exc) {
… code that handles arithmetic exceptions …

}

Thetry-catch specifies aguardedrange of statements (followingtry) and a handler (followingcatch). Excep-
tions are thrown implicitly by primitive operations or explicitly using thethrow statement.

14

Javac compilestry-catch statements as follows. The code in thetry part is compiled into a consecutive region of
bytecodes, theguarded region. The bytecodes from thecatch part are placed separately from the guarded region.
Finally javac records the exception handler in the method’sexception table.This entry ties together the guarded
region and the catch entry point, as follows:

Exception table:
from to target type

2 31 34 <Class java.lang.ArithmeticException>

Each method has a (possibly empty) table of exception handlers. The above exception table specifies that if an excep-
tion of classjava.lang.ArithmeticException or a subclass thereof occurs, the code starting at program
counter 34 should be executed to handle the exception. The exception handler guards the range of bytecodes from
program counter 2 to 31 and any methods invoked from these bytecodes. Outside the guarded region, the exception
handler has no effect. The guarded regions of exception handlers nest properly: if one region is not completely con-
tained in another, they must be disjoint.

Pep translates exception handlers by wrapping the guarded regions inside blocks. For example, the exception handler
shown above is translated into this Self code:

[… code resulting from translation of bytecodes 2-31 …] tryCatch: [|:exc|
exc is_java_lang_ArithmeticException

] With: [|:exc|
… code handling the exception; translated from bytecode 34 on …

]

The code invokes the methodtryCatch:With: on three blocks: first, theguarded blockcontains the guarded
code; second, thetest blockdetermines if a given exception matches the type handled here; third, thehandler block
handles the exception. This translation essentially reverse-engineers the original structured source-level exception
handler from the bytecodes. ThetryCatch:With: method maintains a stack of active exception handlers. It will:

 • push the test block and handler block on the exception handler stack,

 • evaluate the guarded block, and

 • at completion of the guarded block pop the test and handler blocks off the stack.

Now considerthrow , which javac translates into theathrow bytecode. Pep translates this bytecode into a call to a
method that searches the exception handler stack (from most to least recently installed blocks) for a test block that
returns true when invoked on the thrown exception. If such a test block is found, the corresponding handler block is
invoked on the exception object. In fact, it is guaranteed that some test blockwill return true since Pep installs a uni-
versal handler at the bottom of the stack. This handler catches any otherwise uncaught exception and rethrows it in
the parent thread of the current thread in accordance with the Java language definition.

Important parameters that should guide the implementation of exception handling code are the frequencies of install-
ing exception handlers, throwing exceptions, by-passing handlers, and handling exceptions. The passive exception
handler tables used by the JVM (they are only consulted after an exception has been thrown) make installation free.
This design choice favors the programming model in which exceptions occur infrequently, but preparing to handle
them occurs frequently.

In comparison, the code Pep generates for exception handling does not achieve zero-cost installation of exception
handlers. While it is possible for the Self compiler to inline-expand the call oftryCatch:With: and subsequently
the call of the guarded block, the test and handler blocks must still be pushed onto and popped from the exception
handler stack. Worse still, the Self compiler treats heap-stored blocks such as the test and handler blocks more conser-
vatively, so when an exception occurs, it can be relatively expensive to invoke the test and handler blocks. To illus-
trate, we ran the program shown in Figure 9 on JDK 1.0.2 and Pep. The methodimain measures the time for one
million invocations ofmethod1 andmethod2 , two identical methods, except that the latter contains an exception
handler. This admittedly trivial program clearly demonstrates the weakness of Pep’s exception handling. Table 7,
shows that Pep can execute the first loop, which has no exception handler, more than 20 times faster than JDK 1.0.2.
Although the exception handler in the second loop never needs to catch an exception, its mere presence slows down

15

Pep by a factor of 70, the net result being that Pep is now 3 times slower than JDK 1.0.2, which is unaffected by the
presence of the exception handler.

Pep was designed to translate Java exception handling into facilities already present in the Self language (i.e., blocks).
When it was observed that exception handling incurred a significant overhead on some Java programs, we revisited
this design choice. An extension of the Self virtual machine, which permits specification of Java-style “passive”
exception regions, is currently underway. With this extension, Pep’s exception handlers will be light-weight, avoid-
ing, in particular, the creation of up to three blocks for each exception handler installed.

5.4 Synchronization

Threads may synchronize on any Java object by executing an explicit synchronization statement or by invoking a syn-
chronized method. In the latter case, if the method is static (a class method) the synchronization takes place on the
class itself. The two forms of synchronization differ in their manifestation in the bytecodes.

 • Synchronized statementsare implemented using two separate bytecodes,monitorenter andmonitorexit .
They take a reference to the object that they lock/unlock. It is an error for a thread to unlock an object it does not
hold the lock for. Dynamic checks in both Pep and the Java interpreter will throw a monitor-state exception if this
condition is violated.

 • Synchronized methodshave no manifestation in the bytecodes. Instead, the invocation bytecodes check to see if
the called method is synchronized. If it is, the invocation is bracketed inmonitorenter andmonitorexit
operations on the receiver object (or class, if the method is static).

Pep factors the synchronization into a separate object. Each object, whether it represents a Java instance or class, has
a lazily allocatedlock object that implements Java’s synchronization operations. For example, to invokemoni-

Pep JDK 1.0.2
method1 120 ms 2,800 ms
method2 8,900 ms 2,800 ms

Table 7. Timing results from the program in Figure 9.

class TimeExceptions {
int j = 0;

void method1() { j++; }
void method2() { try { j++; } catch (ArithmeticException exc) {} }

// Want instance method, so use main to call imain.
public static void main(String args[]) { new TimeExceptions().imain(); }

void imain() {
long t1 = System.currentTimeMillis();
for (int i = 0; i < 1000000; i++) method1();
long t2 = System.currentTimeMillis();
System.out.println("method1: " + (t2 - t1) + "ms");

long t3 = System.currentTimeMillis();
for (int i = 0; i < 1000000; i++) method2();
long t4 = System.currentTimeMillis();
System.out.println("method2: " + (t4 - t3) + "ms");

}
}

Fig. 9. Program to demonstrate inefficiency of exception handlers in Pep.

16

torenter on an object, the lock is allocated (if necessary) and then acquired by sending it themonitorenter
message.

Whenever amonitorenter bytecode occurs, correctness requires that the matchingmonitorexit bytecode
must be executed, even if an exception should occur. For synchronized statements, Javac ensures this by following the
lock acquisition with an exception handler that traps any exception, releases the lock, and re-throws the exception.
For synchronized methods, which have no explicit locking in the bytecodes, Pep uses a similar re-propagating excep-
tion handler to clean up any locks. This exception handler is found in thesync_do: method, called by the wrapper
for synchronized methods (see Figure 8 on page 10).

The inefficiencies in the current implementation of exception handling described in the previous section make syn-
chronized method invocation too expensive in Pep. While we could avoid the exception handler by using Self’s
_OnNonlocalReturn: primitive, which traps all returns through an activation frame, unfortunately this primitive
is currently even costlier than the exception handler.

To quantify the high cost of synchronization, we ran a simple program that executes 1 million calls of a regular and a
synchronized method, each of which simply increments an integer instance variable; see Table 8. Synchronization
slows down the Pep version by a factor of almost 80 making it slower than the JDK 1.0.2 version, which is also
slowed down by synchronization, but “only” by a factor of 3. While this example is extreme, it is not unusual to find
a high fraction of synchronized method calls even in single-threaded Java programs. Library routines, which must
work both for multi-threaded and single-threaded Java programs, perform synchronization regardless of the number
of threads in the actual program. We conclude that efficient Java implementations must have fast synchronization and
hope to address this shortcoming of Pep in future work.

5.5 Control flow

The Java language has structured control flow (if-then-else, while, do-repeat, switch), but javac compiles away the
structure, emitting bytecodes that express control-flow using low-level jumps (unconditional, conditional, and
indexed goto’s). Self, as described in Section 2.1, builds control-flow structures using dynamic dispatch, blocks, the
_Restart primitive, and non-local returns. In particular, Self has no facility for implementing arbitrary jumps
directly, and since Self does no tail-call elimination, implementing a jump as a tail-call from one block to another is
also not an option. Thus, Pep is in the unusual situation for a compiler to have to map a source language with unstruc-
tured control-flow (Java bytecodes) into a target language with structured control-flow (Self source).

We expected that mapping Java control-flow into Self control-flow would be one of the harder challenges in develop-
ing Pep. This prediction held true. The control-flow analysis complicates Pep and slows down the translation. More-
over, the Self code generated by Pep uses blocks intensely and is hard to optimize for the Self compiler, reducing the
run-time performance of the Java programs. Measurements on several Java programs indicated that these problems
were severe enough to justify adding branch bytecodes to the Self virtual machine. In turn, Pep was re-engineered and
simplified to take advantage of the branch bytecodes. Sections 5.5.1 and 5.5.2 describe the pre-branch-bytecode and
post-branch-bytecode versions of Pep. Section 5.5.3 concludes the control-flow discussion.

5.5.1 Control flow without branch support in Self

The first version of Pep was restricted to mapping Java bytecodes into the existing set of Self bytecodes. Rather than
extending the Self bytecode set to accommodate the translation, we preferred to work harder in the translator to
“make do” with pure Self. To map the unstructured control-flow of Java bytecodes into Self, Pep would do extensive
control-flow analysis.

The control-flow problem that Pep solves resembles the problem addressed in the pioneering work by Baker on struc-
turing Fortran programs. Baker transformed Fortran programs with gotos into programs with if-then-else and repeat

Pep JDK 1.0.2
regular 180 ms 2,800 ms
synchronized 13,900 ms 9,600 ms

Table 8. Time for loop doing one million method invocations.

17

statements [1]. One difference between Baker’s work and the present work is that upon encountering an irreducible
flow graph, she could leave in an occasional goto. For Pep, this option does not exist: the target language has no
gotos. On the other hand, Baker’s algorithm deals with arbitrary control-flow graphs; Pep only needs to handle the
graphs that javac produces from (structured) Java programs. Baker’s approach, like recent work by Cifuentes [3] on
decompilation, uses graph traversals and node numbering to compute the control flow structures. Pep uses graph
transformations, similar to those of Lichtblau [15], the main difference being that Pep has an additional operation
(splitting) to handle graphs that would otherwise be irreducible, e.g., graphs resulting from short-circuiting boolean
expressions.

To recover structured control flow from a Java method, Pep performs these steps:

 • partition the bytecodes into basic blocks and build a control-flow graph;

 • find loops by looking for back-edges in the depth-first tree of the control-flow graph;

 • for each loop, determine theloop header, the basic block that the back-edge points to, and theloop body, the set of
basic blocks reachable by backtracking from the tail of the back-edge up to but not through the loop header;

 • remove the back-edges from the control-flow graph;

 • reducethe control-flow graph into structured control-flow, splitting basic blocks when necessary to meet structural
restrictions;

 • generate source code with structured control-flow from the reduced flow graph, adding the loop edges back in as
necessary.

We illustrate these steps by means of an example, the methodisPrime shown in Figure 2 on page 4. Javac compiles
the method into the bytecodes shown in Figure 10. Before describing the translation in detail, let us preview the final
result produced by Pep for these bytecodes: the Self method shown in Figure 11 (for readability, we reduced the name
mangling slightly). Even a cursory look at this method reveals the structured control-flow and the intensive use of
blocks.

To turn bytecodes into structured control-flow, Pep first finds the basic blocks and then builds the control-flow graph.
Figure 12 shows the control-flow graph forisPrime (each box in the figure is a basic block; the numbers in the
boxes denote program counter ranges). Next, Pep performs a depth-first traversal of the flow graph to identify loops
(each basic block pointed to by a back edge is a loop header). The dashed edge in the figure is the loop edge for the
single loop inisPrime .

Having built the flow graph, Pep temporarily removes the loop edges to make it acyclic. The acyclic graph is then
reducedby repeatedly applying reductions on the graph until it consists of a single node. Intuitively, the reductions
eliminate edges (branches) and as a side-effect build structured control-flow statements that will realize the control
transfers represented by the edges. Pep iterates three different reductions: absorption, promotion, and splitting:

 • Absorptionmoves a basic block into its predecessor and can only be applied to basic blocks with a single prede-
cessor; see Figure 13.

0 iload_1 15 iconst_3 32 iload_2

1 iconst_2 16 istore_2 33 imul

2 irem 17 goto 31 34 iload_1

3 ifne 15 20 iload_1 35 if_icmplt 20

6 iload_1 21 iload_2 38 aload_0

7 iconst_2 22 irem 39 iload_1

8 if_icmpeq 13 23 ifne 28 40 putfield #15 <Field Primes.maxPrime I>

11 iconst_0 26 iconst_0 43 iconst_1

12 ireturn 27 ireturn 44 ireturn

13 iconst_1 28 iinc 2 2

14 ireturn 31 iload_2

Fig. 10. TheisPrime method translated into bytecodes (by javac).

18

 • Promotionhandles control-flow merges such as after if-then-else structures (but also cases with more than two
predecessors) by lifting a basic block to the point that covers all its incoming branches; see Figure 14. Promotion
is legal when the destination basic block and all its descendents have outgoing edges only to the promoted basic
block.

Figure 15 shows that some situations offer a choice between promoting and absorbing. In the figure, the control-flow
graph on the far left, which we say has a “one-way merge” intoD, is first reduced using two absorption steps to the
structure in the center. At this point, only the edge intoD remains unreduced. It can be eliminated in three different
ways: using an absorption or one of two promotions. In such situations, Pep favors promotions over absorptions and

isPrime_I: t_1 = (| t_2 |
(t_1 irem: 2) ifne ifTrue: [

t_2: 3.
[|:exit_0. :restart_0|

((t_2 imul: t_2) if_icmple: t_1) ifTrue: [
(t_1 irem: t_2) ifne ifTrue: [

t_2: (2 iadd: t_2).
restart_0 value

].
^ 0

] False: exit_0
] loopExitContinue.
self a_Primes_maxPrime_: t_1.
^ 1

].
(t_1 if_icmpeq: 2) ifTrue: [^ 1].
0

)

Fig. 11. Self method resulting from Pep-translating theisPrime bytecodes.

Fig. 12. Control-flow graph for theisPrime method.

19

opts for a “higher” promotion (in this case promotingD into A) over a “lower” promotion (promotingD into B). This
way, Pep favors reductions that create less nesting in the resulting source code.

There are situations when choosing a high promotion is incorrect because it may lift a basic block out of a loop that it
should belong to. To avoid this problem, Pep precedes promotions bystructural checks. It verifies that no ancestor on
the path along which a basic block is being promoted is the header of a loop that should include the promoted basic

absorb left
successor

absorb right
successor

Condition:absorbed basic
block has one incoming edge

Fig. 13. Absorption creates nested structures (e.g. if-then-else).

A

B C

A

B

C

A

B C

A

B C

D

A

B C

D

A

B C

D

absorb
twice promote D

Condition:all remaining
arrows (recursively) lead
to the same basic block

Fig. 14. Promotion (right half) handles control-flow merges.

A

B C

D

C has no successor
(throws exception
or returns)

A

B C

D

absorb
twice

A

B C

D

abso
rb

 D
 in

to B

promote D into A

A

B C
D

if(A) {B; {D}} else C;

if(A) B elseC;

if(A) {B; D} elseC;

A

B C
D

promote D into B

Fig. 15. Promotion also applies to “one-way” merges and gives less nesting than absorption.

the last edge can
be eliminated in
3 different ways

D;

20

block. A similar structural check prevents a basic block, which is supposed to be the successor of a loop, from being
pulled into the loop.

Some control-flow graphs cannot be reduced to a single node by absorption and promotion: we simply run out of
legal moves. The left-hand side of Figure 16 shows an example of such a graph.

 • Splitting, then, re-enables progress by copying a basic block and partitioning the incoming edges among the cop-
ies; in the right-hand side of Figure 16, the basic block 23-24 has been split. The copies will have fewer predeces-
sors and therefore less structural constraints, allowing absorption or promotion. Indeed, after splitting 23-24, the
flow graph in the figure can be fully reduced.

Splitting simplifies the structure of flow-graphs to make them easier to reduce. The cost, however, is code expansion.
To keep the code expansion in check, Pep applies two strategies. First, Pep only splits basic blocks when a situation
has arisen that permits no absorption or promotion. In particular, the splitting illustrated in Figure 16 would not hap-
pen until several absorptions had been done. Second, when splitting must be done, Pep attempts to split less drasti-
cally than fully. For example, a basic block with four incoming edges need not be split into four copies; it may suffice
to split it into two, where one copy receives three incoming edges that can be promoted away in a single step and the
other copy receives the single “trouble maker” edge (which can now be absorbed away). These simple strategies keep
the code expansion at less than 15% for most Java programs; e.g., for javac the code expansion is 11.5% (3,784 byte-
codes out of 32,890).

The need for splitting arises because absorptions and promotions cannot cope with certain kinds of control-flow
merges. Typically, javac generates such flow graphs from short-circuiting boolean expressions (the short-circuit edges
can be troublesome) and from switch statements in which some cases have nobreak statements (the edges repre-
senting the fall-through to the next case can be troublesome). Indeed, the control-flow graph shown in Figure 16
resulted from this Java method with a short-circuiting boolean expression:

boolean IsTaskHoldingOrWaiting() {
return IsTaskHolding() || !IsPacketPending() && IsTaskWaiting();

}

The two leaves in the pre-split graph return the possible results of the method, i.e.,true or false .

The reduction process is guaranteed to terminate: each absorption or promotion will eliminate at least one edge from
the graph, and splitting, although it introduces new nodes, does not increase the number of edges. The reduction,
however, isnot guaranteed to succeed: it may stop with more than a single node remaining. The following paragraph
explains why.

start: IsTaskHoldingOrWaiting

0-4

7-11

14-18

23-24 21-22

start: IsTaskHoldingOrWaiting

0-4

7-11

14-18

23-24(2) 21-22

23-24(1)split 23-24

Fig. 16. A flow-graph whose reduction requires splitting.

21

The control-flow reduction process, as described so far, always succeeds. Exception handlers, however, complicate
the reduction process by imposing extra constraints on the legality of reductions. Briefly, exception handlers specify
consecutive regions of bytecodes. Such regions may span several basic blocks. When performing the control-flow
reduction for a method with exception handlers, all basic blocks in a guarded region must remain together. When pro-
moting or absorbing a basic block, care must be taken to avoid lifting it away from the other basic blocks in the
exception handler regions that it belongs to. Likewise, we must avoid lifting a basic block into a structure where it
will be guarded by too many exception handlers. These problems are similar to the structural constraints that loops
impose on promotions but more complicated to deal with since exceptions are orthogonal to the control-flow in the
method (they are simply specified as program counter ranges in the exception table). We have no guarantees that the
control-flow reduction will always succeed under the additional constraints imposed by exceptions, although in the
JDK 1.0.2 system, we have found no methods for which the control-flow analysis falls short, so such cases seem to
occur rarely in practice. This situation could change in the future if exceptions become more used or if javac performs
more optimizations that involve reorganizing bytecodes from several statements.

In summary, Pep’s control-flow analysis is complicated, slows down translation, is brittle in the context of exceptions,
and produces code that is harder to execute efficiently. For all these reasons, the second generation Pep was imple-
mented.

5.5.2 Control flow with branch support in Self

The second version of Pep takes advantage of branch bytecodes added to the Self virtual machine to side-step the
need to do control-flow analysis. These branch bytecodes were designed to be sufficiently expressive to cover all of
Java’s branches. There are four of them:

branch L branch unconditionally to offsetL
branchIfFalse L branch if the object at the top of the expression stack isfalse
branchIfTrue L branch if the object at the top of the expression stack istrue
branchIndexed [L 1, …, Ln] branch to offsetLi wherei is taken from the expression stack.

Space does not permit us to go into details about how these bytecodes were implemented in the Self virtual machine
and their impact on the type-feedback-based optimizations performed by the Self compiler. Instead, we focus on how
the branch bytecodes help the Java to Self bytecode translation performed by Pep.

With the four new Self branch bytecodes, Pep can translate Java bytecodes one by one. In particular, control-flow
transfers can be translated directly by emitting appropriate Self branch bytecodes. For example, Pep can translate
Java’s lookupswitch and tableswitch bytecodes (sparse and dense switch statements, respectively) into
branchIndexed bytecodes. Although the Self branch bytecode in this case supports only a dense multi-way
branch, it is straightforward to compress sparse ranges (Pep uses a hash table or a linear search for compression,
depending on the number of cases in the switch bytecodes).

To illustrate the translation with branch bytecodes, consider the first few bytecodes inisPrime . Pep translates these
bytecodes in the order they occur in the method, for each Java bytecode emitting one or more equivalent Self byte-
codes; see Figure 17. (Although Self bytecodes look different from Self source code, it is fair to think of them as the
essence of Self. A different syntax could be chosen for source code, as long as the Self parser turns it into bytecodes
like the ones in the figure.) In this particular case, each Java bytecode except the conditional branch was translated
into one Self bytecode. Other Java bytecodes translate into somewhat longer sequences of Self bytecodes. In general,
however, we can factor long sequences of bytecodes into a method and simply emit a call to the method instead of the
sequence of bytecodes. With the inlining performed by the Self compiler, the method call does not incur a perfor-
mance cost.

The directness of the translation has implications beyond the translation itself.

 • The pre- and post-translation expression stacks are isomorphic. Given a program counterPCJavain a Java method,
let PCSelf denote the corresponding program counter in the translated Self method. Imagine executing the original
Java method to the pointPCJavaand the translated Self method to the pointPCSelf. The directness of the transla-
tion ensures that the two method invocations will have expression stacks of the same height and contents (modulo
the translation of the values).

22

 • Pre- and post-translation program counters correspond directly to each other. Thus, if the translated Self program
is suspended, it is straightforward to find the corresponding point in the Java bytecodes.

In conjunction, these two properties make it possible to use Pep not only to execute Java programs on the Self system,
but also to inspect and debug Java program executions. By customizing the Self debugger to show Java code instead
of Self code, to present the expression stacks of processes in Java terms instead of Self terms, to undo the name-man-
gling, and to single-step at the granularity of Java bytecodes rather than Self bytecodes, the full power of the incre-
mental Self programming environment becomes available for developing Java code.

The version of Pep that uses Self branch bytecodes can translate any Java method. However, the Self virtual machine
currently does not implement a “trap on return” primitive that the branch bytecode generator uses to translate excep-
tions efficiently (see Section 5.3). Until this primitive is implemented, Pep falls back to using the original code gener-
ator, which does not take advantage of branches, when translating methods with exception handlers.

5.5.3 Discussion: branches or not

The translation without branch bytecodes has only one significant advantage: it requires no extensions to the Self vir-
tual machine. This property was crucial in getting Java programs to run soon after we started work on Pep. However,
it soon became clear that, in the long term, performance would not be good without direct support for branches in the
Self virtual machine. For one, it makes little sense that Pep must work hard to turn low-level branches into structured
control flow, just to have the Self compiler work hard to optimize away the structured control-flow in order to gener-
ate low-level unstructured machine code. While performance is fine when the Self compiler succeeds in completely
eliminating all the blocks, if just one block remains un-inlined in a loop, performance often degrades significantly. In
addition, many Java programs, including Javac, make heavy use of switch statements. Switch statements incur a par-
ticular penalty on the no-branch Self virtual machine: when there is no efficient way to perform a multi-way branch
one must resort to using a sequence of conditional statements. (True, a multi-way branchcouldbe implemented using
dynamic message dispatch, but this approach would require explicit management of local environments, since Self’s
lexical nesting applies to blocks only.)

The difficulties of mapping unstructured (goto-based) control-flow into Self’s control-flow could have been avoided
by working instead from Java source, whichis structured. As mentioned in Section 3, we considered this option, but
rejected it to remain compatible with the standard Java execution model. Other intermediate code formats than Java’s
bytecodes, however, retain the structure of the source program. For example, Clarity MCode hasBeginLoop and
EndLoop bytecodes [14], and Oberon’s “Slim Binaries,” which can be executed on the Juice virtual machine, consist
of compressed abstract syntax trees [7, 8].

Given the unstructured control-flow in Java’s bytecode format, at this point it is clear that the many advantages of
adding branch bytecodes to the Self virtual machine outweigh the one disadvantage (the high implementation effort).
Table 9 summarizes the impact of branches on Pep.

6 Reducing translation overhead

When compiling dynamically, each cycle spent compiling is one less cycle available for execution of the application.
The Self system, in which advanced optimizing compilation has been explored, employs a two-compiler approach to

0 iload_1 load the 1st local variable 0 implicitSelfSend t_1 Self accesses local variables this way
1 iconst_2 push integer constant 2 1 literal 2 push the constant 2
2 irem compute remainder 2 send irem: send msg. to compute remainder
3 ifne 15 jump to 15 if result non-zero 3 send ifne returns true iff receiver is non-zero

4 branchIfTrue 13 conditional jump to 13
6 iload_1 load the 1st local variable 5 implicitSelfSend t_1 load the local variable t_1

Java:
bytecodes

Self:
bytecodescomment commentPCPC

Fig. 17. When translating with branches, the mapping from Java to Self is very direct.

23

balance compilation and execution while ensuring both quick start-up and fast execution. Initially, code is compiled
using a fast non-optimizing compiler. The machine code generated by the non-optimizing compiler is instrumented to
identify the time-consuming parts of the application, and to collect information required for optimization. The opti-
mizing compiler selectively recompiles and optimizes the hot spots as they are identified [12].

The initial version of Pep did not have low translation overhead as a specific goal. Nevertheless, as Pep kept evolving,
some effort was taken to make Pep translation less intrusive. First, laziness was introduced to postpone translation as
long as possible to reduce start-up time of Java applications. Second, a fasterbinary code generator was added. We
describe the use of laziness in Section 6.1 and the source vs. binary code generation issue in Section 6.2.

6.1 Laziness: improving start-up time

Pep employs laziness at two levels to reduce start-up time of applications: classes are never loaded until they are
needed and, within classes, methods are generally left untranslated until their first invocation.

Lazy class loading. In Pep, three circumstances establish the need to load a class:

 • an instance of the class must be created,

 • an array of (array of …) the class must be created, and

 • a subclass of the class must be loaded.

Thus, when a program attempts to create an instance of a class, the class, its superclass, the superclass’s superclass
and so on all the way to classjava.lang.Object will be loaded (unless they have been previously loaded, of
course). For example, if a piece of code executesnew Primes() , the classPrimes will be loaded but no further
classes will be (since the superclass ofPrimes , java.lang.Object , has already been loaded).

While it would be possible, with various degrees of effort, to relax the three circumstances that establish the need to
load a class, doing so incurs additional complexity in Pep. For example, currently the ability to create arrays of a class
is implemented with methods defined on the class itself. Defining these methods in a different object than the class,
would allow Pep to create an array of a class without loading the class (since array elements initially arenull). In
our development of Pep, we have found that the above three circumstances strike a good balance between laziness
(i.e., limiting the number of classes being loaded) and implementation complexity.

Pep implements the lazy loading of classes using Self’s ability to catch message-not-understood errors. Pep-trans-
lated Java code has access to an object,java_classes , which contains all the classes that have been loaded by
Pep2. A class is accessed by using the mangled name of the class as the selector of a message to thejava_classes
object. For example, javac translates the expressionnew Primes() into the Java bytecode

new <class Primes>

without Self branches with Self branches
speed of Pep sluggish (involves many steps) fast; very direct mapping
speed of Self compiler on
generated code

not fast: must optimize code that uses blocks
in complicated ways

potentially faster

efficiency of generated
code

brittle: excellent if Self compiler inlines
awayall blocks, inefficient otherwise

predictable

robustness vulnerable to future changes in javac because
exceptions constrain reduction operations

highly robust due to direct-
ness of translation

implementation effort, Pep high low
implementation effort,
Self virtual machine

zero high: had to add branch sup-
port to both Self compilers

Table 9. Control-flow without and with Self branch bytecodes.

2. To be precise: the objectjava_classes actually holds none of the loaded classes. Instead, itinheritsfrom a separate object,
loadedClasses , which contains all the loaded classes. We have used two objects in order to separate the behavior of on-
demand class loading from the organization of the loaded classes.

24

which Pep then translates into the Self expression

java_classes class_Primes new .

The above expression first sends the messagejava_classes to obtain a reference to the object holding the loaded
Java classes. Then the code sends the messageclass_Primes , obtained by mangling the class namePrimes , to
get the class object. At this point one of two things may happen:

 • thePrimes class has already been loaded, in which case the message simply returns the class object, or

 • thePrimes class has not been loaded, in which case there is no slot in thejava_classes object that matches
the messageclass_Primes . Consequently, a message-not-understood error happens, which the
java_classes object traps. The trap code inspects the failing message’s selector,class_Primes , unman-
gles it to obtain the name of the requested class,Primes , and invokes the class loader to dynamically load, trans-
late, and install this class so that subsequent accesses to it run at full speed.

Thus, in either case, the expressionjava_classes class_Primes returns the class object for the class
Primes . Finally, the class object is sentnew, to create an instance of the class (by cloning the prototype object).

Figure 18 shows a screen snapshot of the code involved in the lazy class translation. The front-most object defines a
method with the name

undefinedSelector:Type:Delegatee:MethodHolder:Arguments:

to trap message-not-understood errors. The method simply invokes Pep’s loader to fetch and translate the requested
class. The object in the background, a parent of the foreground object, contains the loaded classes’ class objects.
Among them is the classPrimes , and several other classes required to execute thePrimes program (most of the
other classes define input/output operations).

Lazy method translation. Even when classes are loaded on demand, translation overhead still delays application start-
up. The most time-consuming part of translating a Java class is translating the bytecodes defining method behavior
into Self expressions. By deferring this step as long as possible (i.e., until each method is invoked), start-up time can
be improved significantly.

Even though lazy translation of methods is generally a win, laziness does incur a small additional overhead over eager
translation in the case where the methodwill be invoked. For example, class initializer methods<clinit> , must by
definition be executed before we can use the classes. Accordingly, Pep never defers translation of class initializer
methods. Similarly, for very short methods, which can be translated quickly, Pep does not employ lazy translation.
For large methods, on the other hand, the translation time itself dwarfs the overhead of setting up lazy translation. The
threshold above which Pep deploys lazy translation is an adjustable parameter. The optimal threshold depends on
translation speed and the likelihood of a method being needed. For the slower source code generator, we have found a
limit of 15 bytecodes to provide good results; for the faster binary code generator, the limit can be raised to 50 byte-
codes.

Lazy translation of methods can be implemented easily in the dynamic Self environment. When translating a class
with a method that is a candidate for lazy translation, instead of translating the bytecodes into Self code, Pep builds a
stub method. Pep installs the stub in the class object under the same name as the method would have been installed if
lazy translation had not been employed. Hence, when a client of the class later tries to invoke the method, the stub
will run instead. The stub contains the information needed to translate the Java bytecodes into Self code, replace itself
with the resulting Self method, and finally invoke the method. To the client, the presence of the stub is invisible,
except for timing effects. Figure 19 shows an actual stub in thePrimes class: the stub for the methodisPrime
(i.e., the figure shows the appearance of the classbeforethe Primes program has executed, since theisPrime
methodwill be executed when thePrimes program runs). The objectcode_attrib defined locally in the stub,
performs the actual translation (“0 _AsObject ” is a name that the Self user interface has made up for the object,
which would otherwise have no name). The last statement in the stub invokes the method resulting from the lazy
translation, passing in the argumentt_1 , the number being tested for primality.

Lazy translation of methods not only improves application start-up, but can also reduce total execution time, since,
for a given application, many of the methods in the classes it uses mayneverbe invoked. For example, consider javac,
a moderately large Java program. When invoking the JDK 1.0.2 version of javac to compile Richards.java, a version

25

of the Richards program, Pep loads 155 classes with a total of 1392 methods. If the lazy translation threshold is 15
bytecodes, 1033 methods are translated while 359 remain as stubs. Table 10 gives numbers for other threshold values.

Fig. 18. Lazy class loading implemented by catching message-not-understood errors.

Fig. 19. Stubs implement lazy translation while shielding callers.

26

As mentioned above, the Self system mixes fast compilation and optimizing compilation to maximize application
progress. While Pep itself does not perform optimizations in the translation of Java bytecodes to Self bytecodes (the
Self compiler does, of course, optimize when compiling the Self bytecodes), an analogous technique could still be
used in Pep to maximize application progress. To illustrate, consider class initializer methods. Each Java class defines
an initializer method, named<clinit> . This method executes exactly once, when the class is loaded. By adding an
interpreter to Pep, class initializers could be interpreted rather than translated to Self code and then executed. Inter-
pretation of Java bytecodes will likely be as fast as, or faster than, the translation into Self code, and, since class ini-
tializers execute only once, the result will be an overall speed-up of the application. The use of an interpreter could be
taken one step further: translation of any method could be deferred until the method has been executed a few times.
Exploring this venue, however, remains future work.

6.2 Source code generation vs. binary code generation

We have discussed laziness as a way to defer and reduce translation overhead. The output of the translator can be
either source code or binary code. This choice affects raw translation speed significantly. Figure 20 illustrates the dif-
ference. By generating binary bytecodes, which in itself is faster than generating source code, the Self parser can be
skipped. (The Self parser is part of the Self virtual machine, but the virtual machine also provides means to bypass it.)

The initial version of Pep generated source code. This choice was made to facilitate debugging: with source code, the
Self environment can be used to inspect (and even patch) the generated code. When Pep was redesigned to take
advantage of Self’s new branch bytecodes, Pep had been exercised enough that we could safely go to a binary code
generator. Furthermore, since the use of branch bytecodes eliminates the need for the expensive control-flow analysis,
the savings from switching to binary code generation are all the more visible. Thus, the two versions of Pep that exist
today couple the choice between source vs. binary and branches vs. no branches: (no branch, source) and (branch,
binary). Decoupling the choices would be an interesting addition to implement, since it would give us the ability to
isolate the effects of the two choices.

We have refrained from performing measurements of the translation speed of the two versions of Pep. For one, trans-
lation speed was never an important concern in the implementation of either version. Moreover, the primitives that the
two versions invoke in the Self virtual machine to build and install the generated methods were never tuned for raw
performance. For example, turning a vector of bytecodes into an executable method, as is done repeatedly when using
the binary code generator, currently takes time proportional to the product of the number of bytecodes and local vari-
ables (i.e., quadratic time in the worst case). While this performance deficiency is insignificant in the interactive Self
programming environment where a programmereditsmethods one at a time, the performance of the primitives mat-
ters a lot for a translator like Pep, whichgenerates a large number of methods in a short time.

lazy threshold,
#bytecodes

#methods
translated

#methods
remain as stub

0 810 582
15 1033 359
50 1256 136
∞ 1392 0

Table 10. Effect of lazy method translation for different size thresholds (measured on javac).

Pep

Self
parser

Self
compiler

Self s
ource

 co
de

Self bytecodes

Self bytecodes

Fig. 20. Binary code generation (bytecodes) allows Pep to bypass the Self parser.

Java program
bytecodes execution

27

7 Performance measurements

In this section we present performance numbers for Java programs executed on Pep. To put the numbers into perspec-
tive, we compare runtimes of the programs when executed on Pep and the JDK 1.0.2 Java virtual machine (the Java
system current at the time when Pep was developed). We also report numbers for the recently released JDK 1.1 sys-
tem. Some precautions must be made, before we give specific numbers.

 • Ongoing Pep and Self virtual machine improvements.Although the Self virtual machine has reached maturity for
executing Self code, only recently did we start feeding it translated Java programs. In particular, the branch byte-
codes were added to the optimizing compiler only recently, so much tuning still remains to be done.

 • Class library differences. We were able to execute our benchmarks on both the JDK 1.0.2 and JDK 1.1 class
libraries. However, even if the class libraries provide the same functionality, differences in their implementation
could still cause the actual bytecodes executed for a given benchmark to differ significantly depending on whether
it is executed with one or the other class library (e.g., as class libraries mature, improved exception testing and
additional synchronization tend to make the code slower while algorithmic improvements could introduce the
opposite trend).

Ideally, we would have liked to keep the class libraries constant while varying the execution engine. Unfortunately,
this was not possible. For example, even a trivial application like HelloWorld cannot be executed on the JDK 1.1
interpreter with the 1.0.2 class library (the result is a core dump). Likewise, the Java native methods in Pep’s runtime
system match the 1.0.2 class library, but cannot support the new 1.1 class library. Thus, to avoid comparing apples to
oranges, we primarily compare Pep and the JDK 1.0.2 interpreter. As a supplement, we include JDK 1.1 numbers,
i.e., measured on the 1.1 interpreter with the 1.1 library.

We present measurements for Pep both with and without Self branch bytecodes. By now, the latter set of numbers is
somewhat academic, since any practical Java system based on the ideas in Pep and the Self virtual machine would
certainly implement branches directly.

Java, like C++, is a hybrid language in which primitive types such as integers are not objects, i.e., they cannot have
virtual methods, and in which methods can be non-virtual or virtual. Therefore, Java permits a spectrum of program-
ming styles ranging from C-like, with most calls statically bound, to Smalltalk-like, with most calls virtual or through
interfaces. Accordingly, when benchmarking Java, it is important to understand the implications of the programming
style. Aiming directly at this critical issue, Mario Wolczko wrote six increasingly object-oriented versions of the
Richards benchmark, an operating systems simulator; see Table 11. Richards, originally written in BCPL by Martin
Richards and later used by L. Peter Deutsch to benchmark Smalltalk, at 500 lines is sufficiently large to be non-trivial
yet small enough that it can feasibly be ported to a number of languages and programming styles. Briefly, from
Richards1 to Richards6 objects become finer-grained (for higher reusability), and virtual calls more frequent (for
higher customizability).

In addition to the Richards versions, we included single versions of other programs in our benchmark suite; see
Table 12. We chose Javac and javadoc because every Java programmer knows them, they solve real and non-trivial
problems, and they require no interaction. RayTracer, provided by Jeff Chan, has been used to characterize the perfor-
mance of the picoJava™ CPU architecture [18]. Wolczko’s Java version of DeltaBlue was included because, like
Richards, it has an established track record as a benchmark for many object-oriented systems. Richards and Deltab-
lue, although written specifically for benchmarking, arenot micro-benchmarks that stress selected language features

version main characteristic (change from previous version)
Richards1 Translated to Java by Jon Gibbons from original BCPL source. The least object-oriented version.

Encodes multiple booleans as integer, switching on the integer to distinguish state of booleans.
Richards2 Uses direct representation of booleans rather than the encoding. No switch statement.
Richards3 Moves some task state into separate objects like in Peter Deutsch’s Smalltalk version.
Richards4 Accesses object state via non-virtual (final) accessor methods.
Richards5 Changes accessor methods to be virtual. Comparable to Deutsch’s Smalltalk version of Richards.
Richards6 Uses interface types, typical of frameworks that operates on independently developed classes.

Table 11. Mario Wolczko’s six versions of Richards.

28

or answer questions such as “how many cycles does an array store operation take?” Rather, they aim to be well-
rounded object-oriented programs.

For each benchmark, Table 12 lists the approximate static size as the number of source lines and the dynamic size as
the number of bytecodes executed. In addition, since our main interest is to understand performance issues related to
object-orientation, the table reports the frequency of virtual calls and, for comparison, non-virtual calls. Here, the
Richards versions, as expected, show increasing frequencies of virtual calls. Perhaps surprisingly, even Richards4,
which usesfinal accessor methods, executes many virtual calls. The reason is that although javaccouldstatically
bind and inline away the accessor method calls, it only does so when invoked with the “-O” flag. For the present
study, we ruled out using “-O” because the inlining that javac then performs often produces illegal bytecodes. For
example, inlining a method that accesses a private field of its class isnot correct when the caller resides in another
class (this problem has now been corrected by restricting inlining in the JDK 1.1 version of javac).

In stark contrast to the other benchmarks, the Linpack benchmarks, shown last in Table 12, exhibit extremely low call
frequencies. These Fortran-derived benchmarks, while stressing Java’s floating point performance, are poor bench-
marks if one is interested in object-oriented features such as virtual calls. We should mention that, in fairness to the
Java interpreter, we changed the Linpack programs to compute with floats instead of doubles, since Pep does so any-
way.

Table 13 shows the raw execution speed of the benchmarks. To reduce statistical variation due to caching, garbage
collection, and other uncontrollable factors, each benchmark was iterated 200 times, discarding the first 100 iterations
and reporting the average execution time of the following 100 iterations. For the long-running RayTracer we scaled
back to 2 warm-up runs followed by 5 measurement runs. The use of multiple runs, in addition to reducing noise,
allows the dynamically optimizing Self system to reach steady-state performance.

Compare first the numbers for Pep with and without branches. For most benchmarks, the performance is quite similar.
The general tendency, although a weak one, is that branch bytecodes speed up benchmarks that use switch statements
intensely (javac and Richards1), but slow down other benchmarks slightly. The almost identical geometric means
confirm that branches do not improve the overall performance of this set of benchmarks. This observation, of course,
does not diminish the important simplifications of Pep enabled by the branch bytecodes, nor does it rule out future
performance gains as the Self compiler is tuned to optimize code with branches more aggressively.

Now compare the 1.0.2 interpreter’s performance against that of Pep. The measurements partition the benchmarks
into three distinct groups:

 • javac, javadoc, and DeltaBlue. Pep runs javac slightly slower than the interpreter and javadoc, and DeltaBlue
about as fast as the interpreter. Preliminary studies indicate that a combination of factors are responsible for the
lack of speed-up despite the Self compiler’s type-feedback optimizations. First, javac performs many operations
on integer values of magnitude larger than the 30 bits that Self can represent directly. Recall from Section 5.1 that
javac ran an order of magnitude faster when we changed Pep from using bigInts to using boxed machine integers.

dynamic counts (using 1.0.2 class library)

program description
source
lines bytecodes

virtual calls,
incl. interface

non-virtual
calls

javac, 1.0.2 compile Richards ~20,000 6,997,379 3.91% 1.35%
javadoc, 1.0.2 gen. html documentation of class ~4,000 9,557,012 3.97% 1.13%
RayTracer render 200x200 picture [18] 3,546 1,999,281,260 12.6% 0.70%
DeltaBlue 2-way constraint solver [20] 1,127 856,625 7.10% 1.12%
Richards1

operating system simulator: six
different versions implementing
the same functionality but
increasingly using the object-ori-
ented features of Java

407 5,145,123 2.96% 0.65%
Richards2 389 6,012,841 3.62% 0.56%
Richards3 453 7,188,798 5.91% 0.79%
Richards4 518 11,247,285 14.2% 1.38%
Richards5 517 11,247,179 14.2% 1.38%
Richards6 552 11,247,267 14.2% 1.38%
Linpack java version of Linpack [6] 573 9,711,971 0.06% 0.06%
LinpackOpt hand-optimized version [11] 585 8,026,293 0.13% 0.00%

Table 12. Characterization of benchmark programs.

29

The boxed integers still incur overhead, explaining in part why javac executes slower on Pep. Second, for tight
loops, likely to appear in the lexers of both javac and javadoc, the backend of the Self compiler falls short: the
major design goal of the Self compiler was optimization of virtual calls whereas little effort was spent on ensuring
good local code quality through traditional back-end techniques such as delay slot filling, register allocation,
avoidance of redundant loads, and common subexpression elimination [12]. We also suspect backend issues
explain the lack of speed-up of DeltaBlue, but we have yet to confirm this hypothesis.

 • RayTracer and all Richards versions. For these call-intensive programs, Pep is significantly faster than the inter-
preter by a factor of 2.6 (RayTracer) to 13 (Richards5). On these programs, the Self compiler’s ability to inline
method calls, whether virtual or statically bound, delivers Pep a clear performance win. Moreover, and no less
important, Pep attains almost constant performance for all Richards versions. This stands in sharp contrast to both
versions of the interpreter for which performance degrades by almost a factor of 3 (from Richards1 to Richards6).
Figure 21 visualizes this pattern by plotting the performance numbers normalized to the time of Richards2 exe-
cuted on Pep without branches (the fastest version). To make the picture clearer, we connected the data points with
lines, although, of course, the dataset is discrete. This result is extremely important. Pep, unlike the interpreters
and all other Java implementations that we are aware of, does not penalize good object-oriented programming
style with bad performance. Promoters of Java as a high-level, safe, object-oriented language should strive to
attain this property, as it is the only way to prevent the prevailing Java programming style from turning C-like for
performance reasons.

 • Linpack and LinpackOpt. Pep executes these non-object-oriented benchmarks only 30-40% faster than the inter-
preter. We attribute this somewhat disappointing performance mainly to the backend of the Self compiler and the
tagged floating point numbers. For Linpack-like code, even a simple dynamic compiler with a strong backend
should be capable of obtaining C-like performance. Compared with JDK 1.0.2, both Pep and JDK 1.1 signifi-
cantly narrows the gap between Linpack and LinpackOpt, indicating that many of the optimizations that Hardwick
performed by hand would be superfluous, had he been using a stronger Java implementation than JDK 1.0.2.

In summary, although the benchmarks point to deficiencies in the backend of the Self compiler, on the object-oriented
and call-intensive benchmarks, Pep, helped by the Self compiler’s type feedback, sustains constant and high perfor-
mance even when object-orientation is taken to the extreme. Pep demonstrates clearly that type feedback can effec-
tively optimize heavily object-oriented Java programs.

Finally, consider the numbers for the JDK 1.1 interpreter in Table 13. Recall that in this case the benchmarks have
been executed against a different class library so the comparison must be taken with a grain of salt. JDK 1.1 is
between 1.6x (LinPackOpt) and 3.0x (RayTracer) faster than JDK 1.0.2. The geometric means indicate that JDK 1.1
is about 2x faster than JDK 1.0.2 and that Pep, in turn, is about 1.5x faster than the JDK 1.1. However, this is one case
in which the mean values do not reveal the whole truth: for javac and javadoc, JDK 1.1 is significantly faster than Pep.

JDK 1.0.2
interpreter

JDK 1.1
interpreter

Pep, no
branches

Pep,
branches

javac, version 1.0.2 7,950 3,700 9,230 8,900
javadoc, version 1.0.2 6,160 2,900 6,590 5,800
RayTracer 570,000 191,000 208,000 218,000
DeltaBlue 520 210 530 520
Richards1 1,050 540 380 320
Richards2 1,250 650 170 200
Richards3 1,510 750 210 210
Richards4 2,900 790 230 250
Richards5 2,880 1,450 230 250
Richards6 2,870 1,710 210 270
Linpack 1,460 820 960 970
LinpackOpt 1,230 790 970 910
geometric mean 3,213 1,514 995 1,012

Table 13. Runtime per iteration (real-time milliseconds on a 167 MHz UltraSPARC 1).

30

Looking once more at Figure 21, the curves for JDK 1.0.2 and JDK 1.1 are similar in shape, but with one difference:
JDK 1.0.2 slows down dramatically at Richards4 whereas JDK 1.1 manages to delay the slow-down until Richards5.
The reason is that JDK 1.1, on a small scale, performs a dynamic optimization not unlike those of the Self compiler.
When certain conditions are met, JDK 1.1 can dynamically inline methods to eliminate the calling overhead: the
inlined method must be at most three bytecodes long to fit in the space that used to occupy the call and must be final
(non-virtual). Richards4 has a lot of final accessor methods, so JDK 1.1’s inliner helps significantly on this bench-
mark. Richards5, however, changes the accessor methods to be virtual so they can no longer be inlined by this simple
inliner. (The Self compiler can still do so, as the flat performance curves for Pep demonstrate.)

8 Current status

Currently, Pep supports the full Java language as of the JDK 1.0.2 release with the following exceptions:

 • floating point values are restricted to the 30 bits provided by Self,

 • finalization and weak pointers are missing (the Self virtual machine provides no such facilities), and

 • the native method interface provided by Pep is non-standard.

The latter point deserves some explanation. Native methods are written in some language other than Java (typically
C) and translated into the host computers machine instructions. They provide access to services defined by the operat-
ing system, windowing system, network, and so on. Native methods can be passed references to Java objects, so that
they can read and write fields in these objects. Since Pep uses a different object layout than do other Java implemen-
tations (for one, the objects are really Self objects and as such have tagged integers and references), most native code
does not work with Pep. It is generally accepted that the 1.0.2 native interface, although efficient because of the direct
exchange of pointers, is too unrestricted. To achieve better isolation of Java and native code, alternative interfaces,
such as JNI [13], have recently been proposed. We expect that Pep can support such an interface.

Meanwhile, we must re-implement native methods specifically for Pep. Typically, we use Self code to do so. When
translating a class containing a native method, Pep consults a special object that contains definitions for native meth-
ods. This object, partially shown in Figure 22, currently contains some 120 native methods. If the native method
object contains a method with a matching name, the method will be copied into the generated class object. If Pep
finds no definition of the native method, it generates one on the fly that simply reports an error if it is executed: “miss-
ing native method.”

Having described the missing parts, let us conclude by looking briefly at what Pepcan do. Pep executes Java pro-
grams that:

 • use threads; Java threads are mapped to Self threads, which have been extended with priorities.

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

1 2 3 4 5 6

no
rm

al
iz

ed
 r

un
tim

e

Richards version

JDK 1.0.2
JDK 1.1

Pep, no branches
Pep, branches

Fig. 21. Runtime of Richards normalized to time of fastest version.

31

 • perform non-blocking input/output (the thread doing IO blocks, other threads keep running).

 • use sockets to communicate over networks; for example, Pep can run Javasoft’s Jeeves web server.

 • use graphical user interfaces, including applets; we ported the “Tiny” version of the AWT library to Pep.

As Pep is subjected to more programs, undoubtedly the need for more native routines will appear. Still, we can confi-
dently say that Pep can execute many and non-trivial Java programs.

9 Conclusions

Java, the latest member of the C family of languages, became popular in a short time. Its strict enforcement of type-
safety, requirement for garbage collection, elimination of unsafe pointer arithmetic, and simplifications over C++ all
contributed to the popularity. The single most important factor in Java’s success, perhaps, is portability: the language
is completely specified, program behavior does not depend on word size or other aspects of the host computer, and
binary programs can be exchanged seamlessly over computer networks regardless of the host architectures. Portabil-
ity, achieved by compiling programs into machine-independent bytecodes for a virtual machine rather than native
code for an actual processor, slows down programs if the bytecodes are interpreted. To regain performance without
sacrificing portability, Java implementations can compile bytecodes into native code on-the-fly.

We built Pep to study the effectiveness of the Self compiler’s type-feedback based optimization on Java code without
having to reimplement the optimizer from scratch. Pep, in itself a just-in-time compiler, translates Java bytecodes into

Fig. 22. Pep uses Self code to implement native methods for Java.

32

Self bytecodes that can subsequently be executed on the Self virtual machine benefiting from the optimizations per-
formed by Self’s just-in-time compiler.

In this paper we have described the design and implementation of Pep. Several aspects of Java’s bytecodes were par-
ticularly challenging and led us to reconsider earlier design decisions:

 • Control flow.Java bytecodes are not a loss-less translation of Java source code: control-flow, structured in Java
source code, has been reduced to low-level branches in the bytecodes. The initial version of Pep worked hard to
reconstruct structured control-flow from the bytecodes, but in the process produced code that was hard for the Self
compiler to optimize. In response to observing this deficiency, David Ungar added branch bytecodes to the Self
virtual machine. The second version of Pep, taking advantage of the new branch bytecodes, has a simpler transla-
tion process because the need for control-flow analysis has been eliminated, and produces code that potentially
can execute more efficiently (although presently does not) because the complicated use of blocks is avoided.

 • Exception handling. Java exception handlers, currently used moderately often, but likely to become more perva-
sive as the Java code base matures and robustness demands increase, should be very cheap to install and relatively
cheap to activate. Pep’s current translation scheme, which relies on blocks, should be replaced with a more effi-
cient one.

 • Primitive types. Java specifies full 32 and 64 bit integers and floats; Self uses tagging and therefore provides only
30 bit integers and floats. Our results indicate that an efficient Java implementation cannot afford to use boxed
integers, not even for just the values that exceed 30 bits.

 • Synchronizationmust be efficient, even when executing single-threaded programs, since many library method
calls are synchronized. Pep’s current synchronization mechanism should be improved.

We also observed general properties of just-in-time compilers. Since compilation happens at run-time, each cycle
spent compiling is one less cycle available for execution. Pep addresses two specific concerns:

 • Reducing translation overhead.The first version of Pep generates source code and performs extensive control-
flow analysis. The second version of Pep generates binary code and performs little control-flow analysis. Unfortu-
nately, the lack of explicit type information in thepop2 bytecode, which does not affect an interpreter, necessi-
tates abstract interpretation of methods containing this and similar bytecodes. We consider this a flaw of Java’s
bytecode set and recommend a redesign to support fast just-in-time compilers.

 • Reducing start-up time.While total translation overhead is important, fast program start-up is even more so in
interactive systems. Pep employs lazy class loading and lazy method translation, two techniques that can benefit
any just-in-time compiler. Two other techniques to reduce start-up time were considered: using an interpreter for
rarely executed methods and, like the Self system, distinguishing between fast compilation and optimizing compi-
lation.

Pep, although from the outset an experimental system, executes most Java programs, even large programs using
threads and graphics. Moreover, the directness of the binary translator enables the use of Pep and the Self system, not
just as a Java execution engine but as a full program development environment: stacks and program counters correlate
so directly across the translation that the executing Self program can be easily inspected in terms of the original Java
source code. In future work we hope to use Pep to study the behavior of Java programs in a broader sense. The pros-
pects are promising because Pep executes in a more flexible environment (Self) than the typical Java interpreter writ-
ten in C.

Pep executes Java programs faster than the JDK 1.0.2 interpreter, but not always faster than the improved 1.1 inter-
preter. Several factors, specific to Pep and the Self system but not inherent to dynamic optimization, impaired the per-
formance of Pep: slow boxed integers, slow exception handling, slow synchronization, and lack of traditional
backend optimizations in the Self compiler. Nonetheless, a very encouraging result came from observing the relative
performance of Pep and the Java interpreters on the six increasingly object-oriented versions of the Richards bench-
mark. Pep, in contrast to the interpreters, attainsnearly constantperformance as Richards is pushed from a C-like
programming style to a highly object-oriented, extensible programming style. This constant performance, unique to
Pep among the Java implementations that we know of, could be crucial to Java’s future success: only an implementa-
tion with this property can steer Java away from the path where a fully object-oriented programming style is sacri-
ficed for performance—the path that poisoned C++.

33

Acknowledgments. David Ungar and Mario Wolczko did essential work on the Self VM, co-designed Pep through
many discussions, and provided feedback on this paper. Neil Wilhelm has been and is (I’m sure!) an unlimited source
of encouragement, bright ideas, and visions. We would like to thank Cristina Cifuentes and the anonymous reviewers
for carefully reading the paper and offering suggestions that helped us significantly improve it. We used Georg
Sander’s vcg tool to draw control-flow graphs [19]. Jeff Chan gave us the RayTracer benchmark.

References
1. Brenda S. Baker. An Algorithm for Structuring Flowgraphs. InJournal of the ACM, 24(1), p. 98-120, January 1977.

2. Craig Chambers, David Ungar, and Elgin Lee. An Efficient Implementation of SELF, a Dynamically-Typed Object-Oriented
Language Based on Prototypes. InLisp and Symbolic Computation4(3), Kluwer Academic Publishers, June 1991. Originally
published inOOPSLA’89 Object-Oriented Programming Systems, Languages and Applications,p. 49-70, New Orleans, Lou-
isiana, October 1989.

3. Cristina Cifuentes. Structuring Decompiled Graphs. Inproceedings of the International Conference on Compiler Construc-
tion, p. 91-105, Linköping, Sweden, 1996. Springer-Verlag (LNCS 1060).

4. Timothy Cramer, Richard Friedman, Terrence Miller, David Seberger, Robert Wilson, and Mario Wolczko. Compiling Java
Just in Time. To appear inIEEE Micro.

5. L. Peter Deutsch and Alan M. Schiffman. Efficient Implementation of the Smalltalk-80 System. InConference Record of the
Eleventh Annual ACM Symposium on Principles of Programming Languages, p. 297-302, Salt Lake City, Utah, January
1984.

6. Jack Dongarra and Reed Wade.Linpack Benchmark—Java Version, http://www.netlib.org/benchmark/linpackjava, April
1996.

7. Michael Franz and Thomas Kistler.Juice. http://www.ics.uci.edu/~juice/intro.html, June 1996.

8. Michael Franz and Thomas Kistler.Slim Binaries. Technical Report no. 96-24, Department of Information and Computer
Science, University of California, Irvine, California, U.S.A., June 1996.

9. James Gosling. Java Intermediate Bytecodes. InProceedings of ACM SIGPLAN Workshop on Intermediate Representations
(IR’95), p. 111-118, January 1995. Published asACM SIGPLAN Notices 30(3), March 1995.

10. James Gosling, Bill Joy, and Guy Steele.The Java Language Specification, The Java Series, Addison-Wesley, 1996.

11. Jonathan Hardwick.Optimizing Java Linpack.http://www.cs.cmu.edu/~jch/java/linpack.html, September 1996.

12. Urs Hölzle and David Ungar. Reconciling Responsiveness with Performance in Pure Object-Oriented Languages. InACM
Transactions on Programming Languages and Systems, 18(4), p. 355-400, July 1996.

13. JavaSoft. Java Native Interface Specification. http://www.javasoft.com/products/jdk/1.1/docs/guide/jni/spec/jni-
TOC.doc.html, February 1997.

14. Brian T. Lewis, L. Peter Deutsch, and Theodore C. Goldstein.Clarity MCode: A Retargetable Intermediate Representation
for Compilation. Sun Microsystems Laboratories Technical Report SMLI TR-95-43, M/S 29-01, 2550 Garcia Avenue,
Mountain View, CA 94043, USA, May 1995.

15. Ulrike Lichtblau. Decompilation of Control Structures by Means of Graph Transformation. InProceedings of the Interna-
tional Joint Conference on Theory and Practice of Software Development (TAPSOFT), p. 284-297, Berlin, March 1985.
Springer-Verlag (LNCS 185).

16. Tim Lindholm and Frank Yellin.The Java Virtual Machine, The Java Series, Addison-Wesley, 1996.

17. Daniel R. Perkins and Dennis Volper. UCSD Pascal on the VAX, Portability and Performance.Software—Practice and
Experience, 14(5), p. 473-482, May 1984.

18. Peter Wayner. Sun Gambles on Java Chips.Byte, p. 79-88, November 1996.

19. Georg Sander. Graph Layout Through the VCG Tool. In Roberto Tamassia and Toannis G. Tollis (Eds.)Graph Drawing,
DIMACS International Workshop GD’94, p. 194-204, October 1994. Springer-Verlag (LNCS 894).

20. Michael Sannella, John Maloney, Bjorn Freeman-Benson, and Alan Borning. Multi-way versus One-way Constraints in User
Interfaces: Experience with the DeltaBlue Algorithm.Software—Practice and Experience, 23(5), p. 529-566, May 1993.

21. Randall B. Smith and David Ungar. Programming as an Experience: The Inspiration for Self. InECOOP’95, Ninth European
Conference on Object-Oriented Programming, p. 303-330, Århus, Denmark, August 1995. Springer-Verlag (LNCS 952).

22. Bjarne Stroustrup. Multiple Inheritance for C++. InProceedings of the European Unix Users Group Conference ‘87, p. 189-
207, Helsinki, Finland, May 1987.

34

23. David Ungar and Randall B. Smith. Self: The Power of Simplicity. InOOPSLA ‘87, Object-Oriented Programming Systems,
Languages and Applications, p. 227-241, Orlando, FL, October 1987. Published asSIGPLAN Notices 22(12), December
1987. Also published inLisp and Symbolic Computation 4(3), Kluwer Academic Publishers, June 1991.

Appendix

Pep classifies the 200 Java bytecodes into an inheritance hierarchy. The classification, although developed specifically
to organize the behavior needed for translation of Java bytecodes, can also be a useful aid in understanding the byte-
code set and, perhaps with modifications, be used for other computations over bytecodes.

The following three figures show the full bytecode set. Only the leaves represent actual (concrete) bytecodes. The
internal nodes represent abstractions of the concrete bytecodes. Most of the behavior needed to translate bytecodes is
defined in the abstract nodes and therefore applies to all the concrete bytecodes inheriting the code. The most funda-
mental distinction that Pep makes is between bytecodes that always, sometimes, and never produce a value when
evaluated. Thus, the “top” abstract bytecode, from which all concrete bytecodes inherit, has three direct children: top-
Stmt (which never produces a value), topEither (which may or may not produce a value), and topExp (which always
produces a value). The topEither part of the hierarchy is shown below. To allow the figures to have a reasonable font
size, the topStmt and topExp nodes and their children are shown separately on the following two pages.

expanded on
separate page

expanded on
separate page

35

36

